A Simple Algorithm for Generating Combinations

Nitin Verma

mathsanew.com

December 22, 2021

For a set S of n elements, a k-Combination is any of its subset hav-
ing k elements. It can be proved that, for any given k, the number of
k-combinations of S must be (}) = n!/((n — k)!k!).

Given an array a of n distinct elements and a non-negative integer k
(k < n), suppose we need to generate all k-combinations of elements of a.
In this article, we will discuss a simple recursive algorithm for the same and
also write a non-recursive equivalent of that.

A Recursive Algorithm

We will use a single array c of k elements to generate each k-combination in
it one by one. Let ¢; denote the array element c[i] for any index i. For any
combination in ¢, say the elements cg, c1,c2, ..., cr_1 have come from array
a’s indices jo, j1,J2,-- -, jk—1 respectively. One intuitive idea is to generate
each combination in ¢ such that, for that combination, jo < j1 < j2 < ... <
jr—1. That is, for each combination in ¢, the k elements appear in the same
order in array a as they do in c.

Once we decide such ordering of elements in ¢, the following idea to
generate any combination may come naturally to us. Pick ¢y from any of
indices 0 to n — k of a; we can’t go further than n — k because we still need
to pick (k—1) elements from higher indices of a. If ¢y was picked from index
jo of a, ¢1 can be picked from any of indices jo + 1 to n — (k — 1), say ji.
Further, ¢y can be picked from any of indices j; + 1 to n — (k — 2), say jo.
And so on.

To generate every possible combination, this process can be repeated for
every possibility of jg, j1, j2,. .., jr—1 in the corresponding ranges.

Copyright (© 2021 Nitin Verma. All rights reserved.


https://mathsanew.com

The following recursive algorithm (implemented in C) is based on the
above idea. generate(s,r) (s for “start”, r for “remaining”) generates all
r-combinations of elements a[s] to a[n — 1] over indices (k — r) to (k — 1)
of ¢. The initial call has s = 0 and r = k. print() prints the combination
currently in c.

#define n 10

int all = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
int k;

int c[n];

void generate(int s, int r)
{

int i;

if(r == 0)

{
print();
return;

}

for(i = s; i < n-r+1; i++)
{
clk-r] = alil;

generate(i+1, r-1);
3
}

void print()
{

int i;

for(i = 0; i < k; i++)
printf("%d ", cl[il);

printf("\n");
}

Consider the case when the elements of array a are in increasing order.
We can prove that each combination generated by the above algorithm will
have its elements in increasing order too. Further, these generated combi-
nations are mutually ordered as per their lexicographical order. Note that
the concept of a k-combination itself does not include any order for its k
elements. Above we are referring to its representation in the array c¢, and
any array has an intrinsic order of its elements.



Non-Recursive Equivalent

In the non-recursive equivalent of generate(), we will be simulating the re-
cursive calls by ourselves. To do that, we will first make some observations
about the generate() method and its execution flow.

First notice that, there can be up to k+1 active invocations of generate(),
with argument r having values from k to 0. Further, for all » > 0, this
method is simply a loop: a sequence of iterations for each 4 in the range s
to n — r. To maintain this state i of (up to) k active invocations, we will
use an array I of k integers. I[k — r] will hold the value of ¢ for invocation
of generate(s,r).

Now note that the method parameter s is used only to initialize ¢ for
the first iteration. Further, for every recursive invocation, the value of s is
specified as “(i41)” by the caller. So, while making the (simulated) recursive
call, we will directly initialize ‘4’ of the new invocation using current ‘¢z’ plus
1, and avoid storing the argument s.

To keep track of the currently executing generate() call (top of the call-
stack), we will use an integer r having value equal to argument r of the call.
While making a (simulated) recursive call or returning, r will be decremented
or incremented by 1 respectively.

These were some of the ideas on which the following non-recursive equiv-
alent of generate() is based. In the while loop below, the beginning of any
iteration can be seen as the point when either (a) a fresh generate() call is
starting, or (b) a generate() call is resuming and starting a new iteration
(the recursive call made by its earlier iteration has just returned). Case (b)
implies r > 0.



void generate_nonrecur ()

{
int I[k], r;

/* prepare to "execute" generate(0, k) */
I[0] = 0;

r = k;

while(r <= k)

{
if(r == 0)
{
print();
/* "return" to the caller */
r=r +1;
continue;
}
/* for both cases (a) and (b), the ’i’ of the iteration to
execute is present in I[k-r] */
if (I[k-r] < n-r+1)
{
clk-r] = alIlk-r]l];
/* prepare to "execute" generate(i+l, r-1) */
if(r > 1)
I[k-(r-1)] = I[k-r] + 1; /* equivalent of "s = i+1" */
/* if the new call has r = 0, no need to init its i’ */
I[k-r]++;
/* make the recursive call */
r=r - 1;
}
else
{
/* all iterations have already completed */
/* "return" to the caller */
r=r+1;
}
}

}



