
A Simple Algorithm for Generating Combinations

Nitin Verma
mathsanew.com

December 22, 2021

For a set S of n elements, a k-Combination is any of its subset hav-
ing k elements. It can be proved that, for any given k, the number of
k-combinations of S must be

(
n
k

)
= n!/((n− k)!k!).

Given an array a of n distinct elements and a non-negative integer k
(k ≤ n), suppose we need to generate all k-combinations of elements of a.
In this article, we will discuss a simple recursive algorithm for the same and
also write a non-recursive equivalent of that.

A Recursive Algorithm

We will use a single array c of k elements to generate each k-combination in
it one by one. Let ci denote the array element c[i] for any index i. For any
combination in c, say the elements c0, c1, c2, . . . , ck−1 have come from array
a’s indices j0, j1, j2, . . . , jk−1 respectively. One intuitive idea is to generate
each combination in c such that, for that combination, j0 < j1 < j2 < . . . <
jk−1. That is, for each combination in c, the k elements appear in the same
order in array a as they do in c.

Once we decide such ordering of elements in c, the following idea to
generate any combination may come naturally to us. Pick c0 from any of
indices 0 to n− k of a; we can’t go further than n− k because we still need
to pick (k−1) elements from higher indices of a. If c0 was picked from index
j0 of a, c1 can be picked from any of indices j0 + 1 to n − (k − 1), say j1.
Further, c2 can be picked from any of indices j1 + 1 to n − (k − 2), say j2.
And so on.

To generate every possible combination, this process can be repeated for
every possibility of j0, j1, j2, . . . , jk−1 in the corresponding ranges.

Copyright c© 2021 Nitin Verma. All rights reserved.

1

https://mathsanew.com


The following recursive algorithm (implemented in C) is based on the
above idea. generate(s, r) (s for “start”, r for “remaining”) generates all
r-combinations of elements a[s] to a[n − 1] over indices (k − r) to (k − 1)
of c. The initial call has s = 0 and r = k. print() prints the combination
currently in c.

#define n 10

int a[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};

int k;

int c[n];

void generate(int s, int r)

{

int i;

if(r == 0)

{

print();

return;

}

for(i = s; i < n-r+1; i++)

{

c[k-r] = a[i];

generate(i+1, r-1);

}

}

void print()

{

int i;

for(i = 0; i < k; i++)

printf("%d ", c[i]);

printf("\n");

}

Consider the case when the elements of array a are in increasing order.
We can prove that each combination generated by the above algorithm will
have its elements in increasing order too. Further, these generated combi-
nations are mutually ordered as per their lexicographical order. Note that
the concept of a k-combination itself does not include any order for its k
elements. Above we are referring to its representation in the array c, and
any array has an intrinsic order of its elements.

2



Non-Recursive Equivalent

In the non-recursive equivalent of generate(), we will be simulating the re-
cursive calls by ourselves. To do that, we will first make some observations
about the generate() method and its execution flow.

First notice that, there can be up to k+1 active invocations of generate(),
with argument r having values from k to 0. Further, for all r > 0, this
method is simply a loop: a sequence of iterations for each i in the range s
to n − r. To maintain this state i of (up to) k active invocations, we will
use an array I of k integers. I[k − r] will hold the value of i for invocation
of generate(s, r).

Now note that the method parameter s is used only to initialize i for
the first iteration. Further, for every recursive invocation, the value of s is
specified as “(i+1)” by the caller. So, while making the (simulated) recursive
call, we will directly initialize ‘i’ of the new invocation using current ‘i’ plus
1, and avoid storing the argument s.

To keep track of the currently executing generate() call (top of the call-
stack), we will use an integer r having value equal to argument r of the call.
While making a (simulated) recursive call or returning, r will be decremented
or incremented by 1 respectively.

These were some of the ideas on which the following non-recursive equiv-
alent of generate() is based. In the while loop below, the beginning of any
iteration can be seen as the point when either (a) a fresh generate() call is
starting, or (b) a generate() call is resuming and starting a new iteration
(the recursive call made by its earlier iteration has just returned). Case (b)
implies r > 0.

3



void generate_nonrecur()

{

int I[k], r;

/* prepare to "execute" generate(0, k) */

I[0] = 0;

r = k;

while(r <= k)

{

if(r == 0)

{

print();

/* "return" to the caller */

r = r + 1;

continue;

}

/* for both cases (a) and (b), the ’i’ of the iteration to

execute is present in I[k-r] */

if(I[k-r] < n-r+1)

{

c[k-r] = a[I[k-r]];

/* prepare to "execute" generate(i+1, r-1) */

if(r > 1)

I[k-(r-1)] = I[k-r] + 1; /* equivalent of "s = i+1" */

/* if the new call has r = 0, no need to init its ’i’ */

I[k-r]++;

/* make the recursive call */

r = r - 1;

}

else

{

/* all iterations have already completed */

/* "return" to the caller */

r = r + 1;

}

}

}

�

4


