
Some Algorithms for Exponentiation

Nitin Verma
mathsanew.com

July 20, 2021

Given two positive integers a and b, we need to compute ab. Here, a is
called the Base, b the Exponent and this process Exponentiation. A related
process is Modular Exponentiation, where we are also given positive integer
n called the Modulus, and need to compute ab mod n. In this article, we
will discuss some algorithms which will apply to both these processes with
slight changes.

On a computer system which can handle integers only up to 64 bits, the
set of integers a and b so that ab can fit in a single hardware provided 64-bit
integer is very limited. For example, to ensure ab < 264 for any a ≥ 2, b
must be less than 64. For a ≥ 256 (= 28), b must be less than 8. To perform
exponentiation for larger integers a and b, we will need a software level
support for handling arbitrarily large integers and arithmetic over them.

The algorithms we discuss here are applicable to any positive integers a,
b and n, however large they may be. But the source code shown for them
will only use int and long type of C, which are restricted in their range of
integers. This allows to keep the source code simpler while we discuss the
mathematics behind the algorithms. With help of a large-integers software
library, this source code can be adjusted to support arbitrarily large integers.

We will be frequently using the binary representation of b. We can denote
it by (bm−1bm−2 . . . b1b0)2, which has m bits for some m ≥ 1. Since b > 0,
the most-significant-bit bm−1 must be 1. We will say bit bp is at Position p.
“MSB” and “LSB” will be used to refer to the most and least-significant-bit.
Due to the way this binary form is written, leftmost and rightmost bits will
mean MSB and LSB respectively. Also, a prefix (or suffix) of this binary
form will mean sequence of bits starting at the MSB (or ending at the LSB).

Copyright c© 2021 Nitin Verma. All rights reserved.

1

https://mathsanew.com


Exponentiation vs Modular Exponentiation

All the algorithms and their C methods presented below will apply both
to exponentiation and modular-exponentiation, with slight changes. The
methods are shown for modular-exponentiation and so contain many uses
of modulo n operation done via “% n”, to reduce the multiplication results
modulo n. Removing these “% n” occurrences will give us the methods for
normal exponentiation.

This close similarity between the algorithms for these two exponentia-
tions can be proven using the following relation from Modular Arithmetic.
Here, x, y and n are any positive integers:

(xy) mod n = ((x mod n)(y mod n)) mod n

Common Structure in Algorithms

In all the algorithms we discuss below, we can observe a common structure.
All of them build-up the value of ab (modulo n) iteratively, where an integer
x initialized as 0 or 1 is updated to a higher integer (or kept intact) in
each iteration. The loop is terminated when x becomes b. The desired
computation of ab is performed in integer variable r, by maintaining the
following loop-invariant in each iteration:

P : r = ax mod n

So, when the loop terminates with x = b, we must have r = ab mod n.
This common structure can be expressed in pseudocode as:

x <- 0 (or 1)

r <- a^0 (or a^1) mod n

while(x < b)

{

increase x to some higher integer.

update r to maintain P for the new x.

}

The individual algorithms will differ in how the value of x is built-up
iteratively to become b, and correspondingly how r is updated to maintain
invariant P for the updated x.

2



We will also see that, though x helps in specifying the invariants and is
critical in understanding the working of the algorithms, its presence is not
really required for actual execution of the algorithms.

We will now discuss the algorithms individually.

Trivial Algorithm

A trivial algorithm is to sequentially compute a2, a3, . . . , ab−1, ab by multi-
plying an ax term with a to obtain ax+1. In the common-structure of last
section, this means initializing x to 1 and increasing it by 1 in each iteration.
As x is updated to x + 1, r can be updated to (modulo n):

ax+1 = axa = ra

The following method implements this algorithm:

typedef unsigned int uint;

typedef unsigned long ulong;

uint trivial(uint a, uint b, uint n)

{

uint r, x;

x = 1;

r = a % n;

/* loop-invariants:

P: r = (a ^ x) % n */

while(x != b)

{

x = x + 1;

r = ((ulong)r * a) % n; /* maintain P */

}

/* x = b */

return r;

}

This algorithm requires b− 1 multiplications, and so becomes inefficient
as b becomes larger.

3



Left-to-Right Binary Algorithm

Suppose we need to compute a22. We can do it by first computing a11

and then squaring it to give (a11)2 = a22. We can compute a11 similarly
but since 11 is odd, we can express a11 = a10a, and compute a10 by first
computing a5 and squaring it. This recursive process can be repeated till
the trivial subproblem of computing a1. The subproblems created in this
example have exponents as (in order of their creation): 11, 5, 2, 1. This
gives us a recursive algorithm based on Divide-and-Conquer approach. We
will now try to find its iterative equivalent.

The binary representation of b helps us here. Depending upon whether
any exponent e is even or odd, we are creating a subproblem with exponent
e/2 or (e−1)/2. So, if the binary form of b has m bits, the first subproblem’s
exponent consists of (m − 1) prefix bits of b. By repeating this argument,
we know that the subproblems (in order of their creation) will have their
exponent as these many prefix bits of b: m− 1,m− 2,m− 3, . . . , 2, 1.

To create the iterative equivalent of the recursive algorithm, we can solve
the subproblems in bottom to top order; that is, solving for the exponents
in this order: 1, 2, 3, . . . ,m prefix bits of b.

In the common-structure shown earlier, x can be initialized to 1 to cor-
respond to the single-bit prefix of b (the MSB, which is 1 here). Every
iteration increases the number of prefix bits in x by 1. So, if the next bit of
b to append to x is bp, the iteration will do it by updating x to 2x + bp. To
maintain invariant P , r will be updated to (modulo n):

a2x+bp = (ax)2abp = r2abp = r2 or r2a {for bp = 0 or 1 respectively}

The loop will terminate when x contains all the m bits of b, i.e. x = b.
The following method implements this algorithm:

4



#define MASK_POSITION31 0x80000000

uint binary_lr(uint a, uint b, uint n)

{

uint mask = MASK_POSITION31;

uint r, x;

while(!(b & mask))

mask = mask >> 1;

/* let p denote the position of 1-bit in the mask. */

/* p = m-1 */

x = 1;

r = a % n;

/* loop-invariants:

X: x consists of prefix bits of b from position m-1 to p.

P: r = (a ^ x) % n */

while(mask != 0x1)

{

mask = mask >> 1; /* p decreases by 1 */

x = x * 2; /* maintain X (step 1) */

r = ((ulong)r * r) % n; /* maintain P */

if(b & mask)

{

x = x + 1; /* maintain X (step 2) */

r = ((ulong)r * a) % n; /* maintain P */

}

}

/* x = b */

return r;

}

As the bits from the binary representation of b are read MSB to LSB (left
to right), this algorithm is often called Left-to-Right Binary Exponentiation
(abbreviated as “Binary LR” algorithm below).

This algorithm performs m− 1 squarings of r, and a multiplication r · a
for every 1 bit seen during the loop, which are maximum m − 1. Thus, it
performs total up to 2(m− 1) multiplications, where m = blog2 bc+ 1.

5



Right-to-Left Binary Algorithm

In the above algorithm, we iteratively read the bits of b from MSB to LSB,
thus building-up x from 1 to include successively more prefix bits of b. Al-
ternatively, we can start with x as the single-bit suffix of b (the LSB), and
iteratively build-up x to include successively more suffix bits of b. Thus,
bits of b will be read from LSB to MSB (right to left). For this reason, this
algorithm is often called Right-to-Left Binary Exponentiation.

In the common-structure shown earlier, every iteration increases the
number of suffix bits in x by 1. So, if the next bit of b to prepend to x
is bp (from position p), the iteration will do it by updating x to x + bp(2

p).
To maintain invariant P , r will be updated to (modulo n):

ax+bp(2p) = ax(a2
p
)bp = r(a2

p
)bp = r or ra2

p {for bp = 0 or 1 respectively}

A separate variable y will be maintaining the value of a2
p

in it as each
iteration increments p by 1, starting from p = 0. The following method
implements this algorithm:

6



uint binary_rl(uint a, uint b, uint n)

{

uint mask, msb_mask = MASK_POSITION31;

uint r, x, y;

while(!(b & msb_mask))

msb_mask = msb_mask >> 1;

mask = 0x1;

/* let p denote the position of 1-bit in the mask. */

/* p = 0 */

x = (b & mask);

y = a % n;

r = (x == 1 ? a % n : 1); /* x is 1 or 0 */

/* loop-invariants:

X: x consists of suffix bits of b from position p to 0.

P: r = (a ^ x) % n

Y: y = (a ^ (2^p)) % n */

while(mask != msb_mask)

{

mask = mask << 1; /* p increases by 1 */

y = ((ulong)y * y) % n; /* maintain Y */

if(b & mask)

{

x = x | mask; /* effectively adding 2^p to x, to maintain X */

r = ((ulong)r * y) % n; /* maintain P */

}

}

/* x = b */

return r;

}

This algorithm performs m− 1 squarings of y, and a multiplication r · y
for every 1 bit seen during the loop, which are maximum m − 1. Thus, it
performs total up to 2(m− 1) multiplications, where m = blog2 bc+ 1.

2k-ary Algorithm

In the Binary LR algorithm, we multiply r with a whenever the bit read
in an iteration is 1. Now suppose r = r1 just before an iteration. The

7



upcoming 4 iterations will be reading 4 bits from b (assuming these many
bits are left), say (1011)2, while updating r as:

r = r21a, r = r2, r = r2a, r = r2a

Thus the value of r after these 4 iterations will be: r161 a11 = r2
4

1 a(1011)2 .
Note that this required 4 squarings of r, and 3 multiplications r ·a (as there
are 3 1-bit in (1011)2).

In many applications of exponentiation, b may contain a large number of
bits, say, in the order of 1000. Suppose, the pattern of 4 bits (1011)2 is seen
again in later iterations. Then again we will be doing the above mentioned 4
squarings and 3 multiplications. But suppose we had computed a(1011)2 once
and saved it somewhere. Then, whenever we find 4 consecutive bits of b being
(1011)2, we can update r directly to r2

4
(using 4 squarings: r2

1
, r2

2
, r2

3
, r2

4
)

and then to r2
4
a(1011)2 (using 1 multiplication with the saved value). Thus,

using the precomputed value, we could reduce the number of multiplications
from 4+3 to 4+1 for every occurrence of the pattern (1011)2 in b. Though,
such precomputations will also be requiring certain multiplications, which
we need to account for.

The 2k-ary Algorithm is based on the above idea. The bits in b are
considered in groups of k (k ≥ 2) consecutive bits; the least significant k
bits form a group and so on. An optimal value of k is chosen for this. Each
group of k bits forms a number in range 0 to 2k − 1, and can be treated as
a digit d in base 2k representation of b. The values ad are precomputed and
stored in a table for each digit d in base 2k (as we will see, we need not do
it for all digits). The algorithm proceeds similarly to Binary LR algorithm.

In the common-structure shown earlier, x will contain some prefix digits
(in base 2k) of b at any point. It is initialized to 0 to correspond to 0 prefix
digits of b. Every iteration increases the number of prefix digits in x by
1. So, if the next digit of b to append to x is d, the iteration will do it
by updating x to (2k)x + d. To maintain invariant P , r can be updated to
(modulo n):

a(2
k)x+d = (ax)2

k
ad = r2

k
ad

where ad is a precomputed value.

Now we will see how the number of values to precompute can be reduced.
Any nonzero digit d in base 2k can be written:

d = 2to, where 0 ≤ t < k, o ∈ {1, 3, 5, . . . , 2k − 1}

8



(t represents “power of two”, and o “odd”). We will precompute only the

odd powers of a: a1, a3, a5, . . . , a2
k−1. In each iteration when x is updated

to (2k)x + d, to maintain invariant P , r will be updated to (modulo n):

a(2
k)x+d = (ax)2

k
a2

to = r2
k
a2

to = (r2
k−t

ao)2
t

For this, first r2
k−t

will be computed using (k− t) squarings of r. Then,
the precomputed ao will be multiplied with the updated r, and this result
itself will be squared t times.

Note that when d is 0, we can simplify the update to r as:

a(2
k)x+d = (ax)2

k
a0 = r2

k

Following is an implementation of this algorithm:

void precompute(uint *table, uint tsize, uint a, uint n)

{

int i;

uint aa = ((ulong)a * a) % n;

/* table[i] will contain a^(2i+1) % n */

i = 0;

table[0] = a % n;

while(i < tsize-1)

{

i = i + 1;

table[i] = ((ulong)table[i-1] * aa) % n;

}

}

void split_d(uint d, uint *t, uint *o)

{

*t = 0;

/* loop-invariant: d * 2^t = (initial d) */

while((d & 0x1) == 0)

{

d = d >> 1;

(*t)++;

}

*o = d;

}

9



void setup_mask(ulong *mask1, int *p1, uint b, int k)

{

ulong mask;

int p;

mask = (1 << k) - 1;

/* mask will always have some consecutive k bits as 1. Currently,

it has the least-significant k bits as 1. We will need to read

base 2^k digits from b, where each digit is a group of k bits.

We now shift this k-bit mask so that it coincides with the

most-significant 2^k digit (k bits) in b. */

/* Number of base 2^k digits in 32 bits are (32 + k-1)/k. */

p = ((32 + k-1)/k - 1)*k;

mask = mask << p;

while(!(b & mask))

{

mask = mask >> k;

p = p - k;

}

*mask1 = mask;

*p1 = p;

}

uint base2k_ary(uint a, uint b, uint n)

{

/* although k = 3 here, we should choose optimal k based on m */

int k = 3, i, p;

uint B, *table, d, t, o;

ulong mask;

uint r, x;

B = 1 << k; /* 2^k */

table = malloc((B/2)*sizeof(uint));

precompute(table, B/2, a, n);

/* p tracks the position of the rightmost (k-th) 1-bit in mask */

setup_mask(&mask, &p, b, k);

x = 0;

r = 1;

10



/* loop-invariants:

X: x consists of prefix bits of b from position m-1 to p+k.

P: r = (a ^ x) % n */

while(mask != 0)

{

/* read the base 2^k digit from the mask position */

d = (b & mask) >> p;

x = x*B + d; /* maintain X corresponding to update in step M */

/* x was updated, now update r to maintain P */

if(d > 0)

{

split_d(d, &t, &o);

/* d = o * 2^t */

/* compute r^(2^(k-t)) */

for(i = 0; i < k-t; i++)

r = ((ulong)r * r) % n;

/* compute r*(a^o) */

r = ((ulong)r * table[o/2]) % n;

/* compute r^(2^t) */

for(i = 0; i < t; i++)

r = ((ulong)r * r) % n;

}

else

{

/* compute r^(2^k) */

for(i = 0; i < k; i++)

r = ((ulong)r * r) % n;

}

mask = mask >> k; /* step M */

p = p - k;

}

/* x = b */

free(table);

return r;

}

In each iteration except the first one, this algorithm performs total k
squarings of r. The first iteration starts with r = 1, and so the first (inner)
loop of k−t squarings of r has negligible cost, leaving us with only the second

11



loop of t squarings of r. The total number of iterations equals the number
of base 2k digits in the m bits of b, i.e. dm/ke. The total squarings of r will
come out to be maximum m− 1, which is same as the m− 1 squarings of r
in Binary LR algorithm.

Also, each iteration does 1 multiplication r · ao if d 6= 0. So, there will
be up to dm/ke such multiplications by all iterations. The precomputation
itself involves 1 squaring (a2) and 2k−1− 1 multiplications, hence total 2k−1

multiplications.

Thus, maximum total number of multiplications (including those for
squaring) required is:

(m− 1) +
⌈m
k

⌉
+ 2k−1 ≈ m +

m

k
+ 2k−1 (1)

For a given m, let Nb and N(k) (for any integer k) denote the number
of multiplications required by Binary LR algorithm and 2k-ary algorithm
respectively. For k = 2, N(k) < Nb iff:

m +
m

2
+ 22−1 < 2(m− 1)

⇔ m > 8 (2)

Similarly, for k = 3 and k = 4 also, when m ≤ 8, N(k) exceeds Nb.
So, for the case of m ≤ 8, we can prefer Binary LR algorithm over 2k-ary
algorithm. Now we will see how to choose an optimal k when m > 8.

2k-ary Algorithm: Optimal k

We can choose the value of integer k (k ≥ 2) which minimizes the number
of multiplications in (1) for a given m, which means to minimize:

f(k) =
m

k
+ 2k−1

For m > 8, as k increases from 0 to higher integers, f(k) first keeps
decreasing and then keeps increasing. So, to find integer k where f(k) is
minimum, we will look for the integer k at which this f(k) increase starts.
More precisely, we need the smallest integer k satisfying:

f(k) ≤ f(k + 1)

⇔ m

k
+ 2k−1 ≤ m

k + 1
+ 2k

⇔ m

k(k + 1)
≤ 2k−1

⇔ m ≤ 2k−1k(k + 1)

12



The below table shows some ranges of m and their optimal k value:

m 9–12 13–48 49–160 161–480 481–1344 1345–3584 3585–9216
k 2 3 4 5 6 7 8

Consider some m > 8, and let ko denote the corresponding optimal k.
Then, N(ko) must not exceed N(k) for any integer k ≥ 2. So, N(ko) ≤ N(2).
But, as seen in (2), for all m > 8, N(2) < Nb. Thus,

N(ko) < Nb

In other words, for all m > 8, the number of multiplications required by
2k-ary algorithm with optimally chosen k is always less than that required
by Binary LR algorithm.

The number of multiplications saved by this algorithm, compared to
the Binary LR algorithm, become more significant as m increases. For
example, with m = 18 and m = 52, the Binary LR algorithm requires
(2(m − 1) =) 34 and 102 multiplications, but this algorithm requires (due
to (1)) 18 + (18/3) + 22 = 28 (k = 3) and 52 + (52/4) + 23 = 73 (k = 4)
multiplications respectively.

�

13


