
Array Rotation: Dolphin Algorithm

Nitin Verma
mathsanew.com

May 4, 2021

Consider an array a of n elements; the element type can be anything.
Given any integer k, 1 ≤ k ≤ (n − 1), we need to right-shift this array
circularly by k elements. That means, if Ai denotes the initial value of a[i]
for all indices i, then elements of array a should be rearranged such that the
following hold:

(∀i : 0 ≤ i < k : a[i] = An−k+i) ∧ (∀i : k ≤ i < n : a[i] = Ai−k)

⇔ (∀i : 0 ≤ i < n : a[i] = A(i−k) mod n)

In words, each element of the array shifts right (to higher index) by k
positions, while wrapping around the boundary at index n − 1 if required.
We will refer this process as “rotating the array by k”.

Another way to look at this process is that, it interchanges the two blocks
of elements which are at index ranges [0, n− k − 1] and [n− k, n− 1]; so it
can also be called “block interchange”.

In this article, we will discuss the Dolphin Algorithm to perform this
task, its proof and one modification to it. The algorithm seems to be first
published in a 1966 paper by Fletcher and Silver [1], and was rediscovered
and named such in [2]. Some places on internet also call it Juggling Algo-
rithm.

Due to the rotation, if the element at index i ends up being placed
at index j, we will refer such j as the “target-index” of i, and i as the
“source-index” of j. Notice that the task of rotating an array is a way of
rearranging its elements such that the element at index i gets moved to
the target-index given by function f(i) = (i + k) mod n. We can also say
that, an index i receives the element from source-index given by function
g(i) = (i− k) mod n.

Copyright c© 2021 Nitin Verma. All rights reserved.

1

https://mathsanew.com


Now, consider the below sequence of indices in which each index is fol-
lowed by its target-index:

Si : i, f(i), f(f(i)), f(f(f(i))), . . . (1)

Since f can only take up to n values, this sequence must start repeating
at some point. Note that the (j + 1)th element (j ≥ 0) of this sequence is
given by:

f(f(f(. . . {j times}(i)))) = (((((i + k) mod n) + k) mod n) + k . . .) mod n

= (i + jk) mod n (2)

The Dolphin Algorithm makes use of the nature of this sequence, which
we will understand further with the help of modular arithmetic. In the next
section, we prepare the relevant mathematical results.

Modular Arithmetic

Please refer to the proof of theorem 2 in article titled Multiples of an Integer
Modulo Another Integer [3]. Based on that, we can write the following
theorem:

Theorem 1. For any integers a, n with n > 0, a mod n 6= 0, and g =
gcd(a, n), denote (ai) mod n as vi for all integers i ≥ 0, and n/g as t.
Then:

1. v0, v1, v2, . . . , vt−1 are all distinct, and form the set
G = {0, g, 2g, . . . , ((n/g)− 1)g},

2. for any integer j ≥ 0, vt+j = vj. That is, in the sequence of vi values,
the subsequence (v0, v1, v2, . . . , vt−1) keeps repeating.

Note that we did not claim anything about which value vi maps to which
value in G. Further in this theorem, what can we say about values of the
form (ai + b) mod n, for some integer b ≥ 0 ? Note,

(ai + b) mod n = ((ai) mod n + b) mod n = (vi + b) mod n

From theorem 1, we know that the vi values only belong to the set G.
Inspecting the set G, we know that if 0 ≤ b < g, then 0 ≤ (vi + b) < n, and
so:

(vi + b) mod n = vi + b

2



So, if 0 ≤ b < g, then:

(ai + b) mod n = vi + b = (ai) mod n + b

That is, the sequence of values (ai+ b) mod n is obtained simply by adding
b to each element in the sequence of values (ai) mod n. We can write the
following conclusion using theorem 1:

Corollary 2. For any integers a, b, n with n > 0, 0 ≤ b < g, a mod n 6= 0,
and g = gcd(a, n), denote (ai + b) mod n as v′i for all integers i ≥ 0, and
n/g as t. Then:

1. for all integers i ≥ 0, v′i = (ai) mod n + b,

2. v′0, v
′
1, v
′
2, . . . , v

′
t−1 are all distinct, and form the set

Gb = {b, g + b, 2g + b, . . . , ((n/g)− 1)g + b},

3. for any integer j ≥ 0, v′t+j = v′j. That is, in the sequence of v′i values,
the subsequence (v′0, v

′
1, v
′
2, . . . , v

′
t−1) keeps repeating.

The symbols of a, n, i, j, g used in above theorems have been chosen to
match those in the referred proof of [3]; they do not correspond to other
objects of this article.

Dolphin Algorithm

We now move back to the discussion about sequence (1). As found in (2),
the elements of sequence Si are given by (i + jk) mod n, for j = 0, 1, 2, . . ..
Let g = gcd(k, n) and t = n/g. Using corollary 2, we can conclude this
about sequence Si for 0 ≤ i < g:

(a) the first t elements of the sequence are all distinct, forming the set
Gi = {i, g + i, 2g + i, . . . , ((n/g) − 1)g + i}. Also, the first element simply
equals i.

(b) after the first t elements, the subsequence of these t elements keeps
repeating in the sequence Si. That is, the (t+1)th element equals 1st element
(which is i), and so on.

(c) for all j ≥ 0, the (j + 1)th element is given by (jk) mod n + i. So,
the (j + 1)th element of the g sequences S0, S1, . . . , Sg−1 are consecutive.

We will be referring to the subsequence of first t elements of each se-
quence Si as “cycle Ci”, which are nothing but elements of set Gi in some

3



order. Note that, the tth/last value of Ci has its target-index as the first
value of Ci; hence the name “cycle”.

Now observe that, for the g sets G0, G1, . . . , Gg−1:

Gi ∩Gi′ = ∅, for all 0 ≤ i, i′ < g with i 6= i′ (3)
g−1⋃
i=0

Gi = {0, 1, 2, . . . , n− 1} (4)

What we have so far discussed forms the mathematical basis of the Dol-
phin Algorithm, which we describe now. For rotating the array, that is to
rearrange its n elements, the algorithm considers one cycle Ci at a time,
for i = 0, 1, 2, . . . , g − 1. Recall that the cycle Ci consists of t = n/g array
indices starting with i, such that each index x is followed by its target-index
f(x).

The elements of array a which are located at indices of cycle Ci, can be
rearranged as required by moving them as per the cycle’s order. Now, for
iterating over the cycle Ci, we can either step in the forward direction as:

i, f(i), f(f(i)), . . .

or backward direction as:

i, g(i), g(g(i)), . . .

In the first way, a source-index is followed by its target-index. In the
second one, it is the reverse. Below method implemented in C shows a way
to rearrange the elements indexed by cycle Ci using the backward iteration:

4



/* n added below as x-k can be negative */

#define g(x) ((x-k+n)%n)

/* Process one cycle C_i. k must satisfy: 1 <= k <= (n-1) */

void process_a_cycle(int a[], int n, int k, int i)

{

int si, ti; /* source-index, target-index */

int external;

ti = i;

si = g(ti);

external = a[ti]; /* created a vacancy/hole at ti */

/* loop-invariants:

P1: ti is the target-index for si, i.e. g(ti)=si.

P2: the hole is located at ti. */

while(si != i)

{

/* fill-up the hole at ti, now creating a hole at si */

a[ti] = a[si];

ti = si;

si = g(ti);

}

/* (P2: the hole is located at ti) holds, and ti has source-index

(si = i) */

a[ti] = external;

}

Notice how the elements could be shifted along the cycle while requiring
extra memory for only one array element. The forward iteration can also be
implemented slightly differently.

Now, due to (3) and (4) we know that if we rearrange each of the g
cycles C0, C1, . . . , Cg−1 as above, we will have rearranged all the n elements
of the array. So, the following method must result in rotation of the array
as required. For computing the gcd, it uses Euclid’s Algorithm.

void dolphin(int a[], int n, int k)

{

int i, g;

g = gcd(n, k);

for(i = 0; i < g; i++)

process_a_cycle(a, n, k, i);

}

5



int gcd(const int X, const int Y)

{

int x, y;

x = X; y = Y;

while(x != 0 && y != 0)

{

if(x > y)

x = x%y;

else

y = y%x;

}

if(x != 0)

return x;

else

return y;

}

Note that this algorithm moves each array element (except a[i]) only
once, directly to its target-index, hence avoiding any intermediate moves.
It was named “Dolphin Algorithm” by [2] because, “the movement of the
array values looked like dolphins leaping out of the water and disappearing
again at random places”.

A Modification

The Dolphin Algorithm rearranges all n/g elements of one cycle before mov-
ing on to another cycle; there are total g such cycles to consider. We al-
ready know that among these g cycles of n/g elements each, no two have
a common element. Further, from point (c) at the beginning of the last
section, the (j + 1)th element (for all j ≥ 0) of all these cycles are con-
secutive, forming a block of g contiguous indices in the array. Starting
positions of these blocks is given by the elements of cycle C0, which are the
set G0 = {0, g, 2g, . . . , ((n/g)− 1)g}. There are total n/g such blocks.

This allows that we can process all the g cycles together, by moving to-
gether the elements at their (j + 1)th index to the respective target-indices
(which too must be contiguous). That is, we now move a block of g con-
tiguous elements at a time, to its target location.

But this will require extra memory to store first g elements of the array,
like we stored a single element in the method process a cycle(). The g =

6



gcd(k, n) may be large requiring more memory. So, instead of processing
all the g cycles together, we can pick up to c (1 ≤ c ≤ g) cycles at a
time, where c can be a parameter. These picked c cycles should have their
corresponding ((j+1)th in each cycle) indices contiguous in the array. Below
is an implementation of this algorithm:

/* k must satisfy: 1 <= k <= (n-1) */

void cycling_blocks(int a[], int n, int k, int c)

{

int i = 0, g;

int si, ti; /* source-index, target-index as per cycle C_i */

int external[c];

g = gcd(n, k);

while(i < g)

{

if(c > g-i)

c = g-i;

/* process these c cycles together: C_i,C_{i+1},...,C_{i+c-1} */

/* notice the similarity between this shifting of blocks and

shifting of single elements in process_a_cycle(). The

loop-invariants are similar to that method. */

ti = i;

si = g(ti);

memcpy(external, &a[ti], c*sizeof(int));

/* above created a vacancy/hole of c elements, starting at ti */

while(si != i)

{

memcpy(&a[ti], &a[si], c*sizeof(int));

ti = si;

si = g(ti);

}

memcpy(&a[ti], external, c*sizeof(int));

i = i+c;

}

}

The original Dolphin Algorithm visits the entire range of array in hops
of size k, while moving one element at a time. Hence, (depending upon k, n)
it may not show good spatial locality of reference. This modified version (if

7



g > 1 and c > 1) reduces the number of visits across the entire array, and
hence must exhibit more spatial locality.

We may call this modified algorithm as “Cycling Blocks Algorithm”,
because blocks of contiguous elements are shifted along a cycle. Note, for
g = 1, the blocks can have a single element only, and so it becomes equivalent
to the original Dolphin Algorithm.

The idea of processing the g cycles together was also discussed briefly in
[4] (section 2.3.3), which also mentions about its use in [1].

�

References

[1] W. Fletcher, R. Silver. Interchange of Two Blocks of Data. C. ACM, Vol
9 (5) (1966), 326.

[2] D. Gries, H. Mills. Swapping Sections. Technical Report (Cornell Uni-
versity), 81-452 (1981). https://hdl.handle.net/1813/6292.

[3] Nitin Verma. Multiples of an Integer Modulo Another Integer.
https://mathsanew.com/articles/

multiples_of_an_integer_modulo_another_integer.pdf (2020).

[4] J. Bojesen, J. Katajainen. Managing Memory Hierarchies (MSc Thesis).
http://hjemmesider.diku.dk/~jyrki/PE-lab/Jesper/

bojesen00.ps (2000).

8


