Computing Logarithm Bit-by-Bit

Nitin Verma
mathsanew.com

August 4, 2021

Given any positive real number a, we want to find its logarithm in base 2, i.e. $\log _{2} a$. In this article, whenever we specify "log", it will mean $\log _{2}$. Say, $\log a=n+f$, where n is an integer and f is a fraction with $0 \leq f<1$. That is, $a=2^{n+f}=2^{n} 2^{f}$, where $1 \leq 2^{f}<2$. Note that n is negative when $a<1$. Also, $2^{n} \leq a<2^{n+1}$ for all a.

In this article, we will often refer to the binary representation of some non-negative real number r, denoted as: $\left(r_{m} r_{m-1} \ldots r_{0} \cdot r_{-1} r_{-2} \ldots\right)_{2}$. The bit r_{i} is said to be at position i. r_{m} is the most-significant-bit (MSB). The radix-point (.) separates the integer and fractional part of r. The value of r is given by:

$$
r_{m}\left(2^{m}\right)+r_{m-1}\left(2^{m-1}\right)+\ldots+r_{0}\left(2^{0}\right)+r_{-1}\left(\frac{1}{2^{1}}\right)+r_{-2}\left(\frac{1}{2^{2}}\right)+\ldots
$$

For example, in $(110.101)_{2},(110)_{2}$ represents 6 and $(0.101)_{2}$ represents $5 / 8=$ 0.625 , giving the complete value of 6.625 in decimal.

If a is an integer and stored as an integer type, we can check the position of its MSB in the binary form. This bit position gives us the value of n. If a is a real number stored as a floating-point of IEEE standard 754 (significand $\times 2^{\text {exponent }}$), again we can exploit the storage format to find n.

If we do not want to depend upon the storage format of a, we can find n by other methods too. For example, if $a \geq 2$, we can iteratively divide it by 2 until $a<2$, while counting the number of divisions needed (the count is n). Similarly, if $a<1$, we can iteratively multiply it by 2 until $a \geq 1$ (the count is $(-n)$). There can be other more efficient methods also.

We now come to the problem of finding f. Once we know n, we will divide a by 2^{n} to give us another real number $x=a / 2^{n}=2^{f}$, where $1 \leq x<2$. We need to find $f=\log x$. There are a few algorithms known for this, and this operation is sometimes also provided by the hardware itself. We will

[^0]discuss a simple algorithm which is based on very basic mathematics. It finds f iteratively one bit at a time.

Bit-by-Bit Algorithm

The algorithm may have been discovered multiple times independently, but appears to be first published in 1956 by D. R. Morrison [1]. Morrison provided a generic algorithm to find inverse of any function which meets certain conditions, 2^{y} being one such function. Note, $\log _{2}\left(2^{y}\right)=y$, so the inverse of 2^{y} is the $\log _{2}$ function.

Since $0 \leq f<1$, it can be written in binary form as: $\left(0 . b_{1} b_{2} b_{3} \ldots\right)_{2}$, where each b_{i} is a bit (0 or 1) at position $(-i)$. The algorithm makes use of the below observations:

$$
\begin{align*}
f= & \log x \tag{1}\\
\Leftrightarrow \quad 2 f= & \log \left(x^{2}\right) \\
& \left\{\text { since } 2 f=2\left(0 . b_{1} b_{2} b_{3} \ldots\right)_{2}=\left(b_{1} \cdot b_{2} b_{3} \ldots\right)_{2}\right\} \\
\Leftrightarrow \quad\left(b_{1} \cdot b_{2} b_{3} \ldots\right)_{2}= & \log \left(x^{2}\right)
\end{align*}
$$

So, $x^{2} \geq 2$ implies b_{1} must be 1 , and $x^{2}<2$ implies b_{1} must be 0 . Thus, b_{1} can be deduced just by comparing x^{2} with 2 . Further,

$$
\begin{aligned}
\left(b_{1} \cdot b_{2} b_{3} \ldots\right)_{2} & =\log \left(x^{2}\right) \\
\Leftrightarrow \quad\left(0 . b_{2} b_{3} \ldots\right)_{2} & =\log \left(x^{2}\right)-\left(b_{1}\right)_{2} \\
& =\log \left(\frac{x^{2}}{2^{b_{1}}}\right) \\
& =\log \left(x^{2}\right) \text { or } \log \left(\frac{x^{2}}{2}\right) \quad\left\{\text { for } b_{1}=0 \text { or } 1 \text { respectively }\right\}
\end{aligned}
$$

If we now consider $\left(0 . b_{2} b_{3} \ldots\right)_{2}$ to be our new f, and x^{2} or $x^{2} / 2$ (based on b_{1}) to be our new x, then above relation translates to $f=\log x$, which is same as (1). Thus, bit b_{2} can be found by the same process we used to find b_{1}. Repeating this process m times will give us m bits of f up to b_{m}, which we can combine to give us an approximation for f as $\left(0 . b_{1} b_{2} b_{3} \ldots b_{m}\right)_{2}$.

Below is an implementation of this algorithm in C. Input x is assumed to follow $1 \leq x<2 . m$ specifies the number of bits to generate for f.

```
/* base-2 log bit-by-bit */
float log2_bbb(float x, int m)
{
    int i, bits, bit;
    if(x == 1)
        return 0;
    i = 0;
    bits = 0;
    /* loop-invariants:
            P: f = log(x) (variable f is unknown and shown commented)
            Q: 1 <= x < 2
            R: 'bits' contains i bits appended as 'bit' */
    while(i < m)
    {
        /* f <-- 2 * f */ /* maintain P */
        x = x * x;
        if(x >= 2)
        {
            bit = 1;
            /* f <-- f - 1 */ /* maintain P */
            x = x/2;
        }
        else
            bit = 0;
        bits = (bits << 1) | bit;
        i++;
    }
    /* 'bits' contains m bits from f, so f =(approx) bits/(2^m) */
    return ((float)bits) / (1 << m);
}
```

There can be other variants of this algorithm. For example, we can write it for computing logarithm in any base $b\left(\log _{b} x\right)$. For that, the comparison $x^{2} \geq 2$ needs to be replaced by $x^{2} \geq b$ to deduce the bit. And for the new x, division $x^{2} / 2$ needs to be replaced by x^{2} / b.

Another variant is to treat f in any other radix d as $\left(0 . d_{1} d_{2} d_{3} \ldots\right)_{d}$, where each d_{i} is a digit in radix d. Then, instead of generating f one bit at a time, we can generate it one (radix- d) digit at a time. For that, both sides of (1) are multiplied by d, and instead of x^{2} we need to compute x^{d}. Then, we need to find digit d_{1} such that $2^{d_{1}} \leq x^{d}<2^{d_{1}+1}$. After finding d_{1}, we will compute $x^{d} / 2^{d_{1}}$ instead of $x^{2} / 2^{b_{1}}$ for our new x.

Reversing an Exponentiation Algorithm

Since $f=\log _{2} x$ is equivalent to $2^{f}=x$, we can say that finding logarithm is reverse of doing exponentiation. In an earlier article titled Some Algorithms for Exponentiation [2], we discussed Binary (Left-to-Right) algorithm for computing a^{b} where a and b are positive integers.

Can we create a similar algorithm to compute 2^{f} where f is not an integer, but a real number with $0 \leq f<1$. That is, can we iteratively process the bits of $f=\left(0 . b_{1} b_{2} b_{3} \ldots\right)_{2}$ to build-up 2^{f}, as we did in the Binary (Left-to-Right) algorithm to build-up a^{b} ? Below we see how this can be done; note that it processes bits of f in right-to-left order:

```
float binary_exp(float f)
{
    float x, y;
    int m = 8, p, bit = 0;
    /* say f = (0.b{-1} b{-2} b{-3} ... b{-m}) in binary (m bits) */
    p = -(m+1);
    y = 0;
    x = 1;
    /* loop-invariants:
            Y: y consists of suffix bits of f from position p to -m;
                thus y = 0.(bp b[p-1] ... b{-m}) (implies 0<= y < 1).
            X: x = 2^y (implies 1 <= x < 2) */
    while(p < -1)
    {
        p = p + 1;
        /* bit = {read the next bit of f, from position p} */
        /* maintain Y */
        y = (y + bit)/2;
        /* maintain X */
        if(bit)
            x = x * 2;
        x = sqrtf(x); /* sqrtf() computes the square-root */
    }
    /* p = -1 */
    /* y = f */
    /* x = 2^f */
    return x;
}
```

It need not be an efficient way to compute 2^{f}. But we wish to see if this exponentiation algorithm, where f is given and 2^{f} is computed, can help us create an algorithm to compute f if 2^{f} is given. Can we reverse the execution of the loop in this method so that we can start with $x=2^{f}$ (x known, f unknown) and generate the bits of f one by one?

Suppose we know x at the end of an iteration, call it x_{e}. Note that each iteration maintains $1 \leq x<2$. The value of x at the start of this iteration must be $x_{s}=x_{e}^{2}$ or $x_{e}^{2} / 2$ depending upon the bit processed. But x_{s} too must follow $1 \leq x_{s}<2$. So, $x_{s}=x_{e}^{2}$ iff $1 \leq x_{e}^{2}<2$. And $x_{s}=x_{e}^{2} / 2$ iff
$1 \leq x_{e}^{2} / 2<2$, i.e. $2 \leq x_{e}^{2}<4$. So, x_{s} and hence the bit can be deduced based on whether $x_{e}^{2} \geq 2$ or not.

Thus we have found a way to reach at the starting state of an iteration from its end; to reverse the execution of an iteration. Starting with the final value of $x\left(=2^{f}\right)$, we can now execute all iterations in the reverse order, with each iteration itself reversed as above. Below we see the loop effecting such reversal:

```
p = -1;
/* variable y is not shown */
/* x = 2^f is given, 1 <= x < 2 */
while(p > -(m+1))
{
    x = x * x;
    if(x >= 2)
    {
        bit = 1;
        x = x/2;
    }
    else
            bit = 0;
    /* 'bit' is the bit of f at position p */
    p = p - 1;
}
/* p = -(m+1) */
```

Thus we could find a method to generate the bits of f one by one. Notice that this algorithm is same as the Bit-by-Bit algorithm we discussed earlier, but we have arrived at it by reversing an exponentiation algorithm.

References

[1] D. R. Morrison. A Method for Computing Certain Inverse Functions. Math. Comp. (AMS), Vol 10 (1956), 202-208. https://www.ams.org/ journals/mcom/1956-10-056/S0025-5718-1956-0083821-9.
[2] Nitin Verma. Some Algorithms for Exponentiation. https://mathsanew.com/articles/ algorithms_for_exponentiation.pdf (2021).

[^0]: Copyright © 2021 Nitin Verma. All rights reserved.

