
Computing Logarithm Bit-by-Bit

Nitin Verma
mathsanew.com

August 4, 2021

Given any positive real number a, we want to find its logarithm in base
2, i.e. log2 a. In this article, whenever we specify “log”, it will mean log2.
Say, log a = n+ f , where n is an integer and f is a fraction with 0 ≤ f < 1.
That is, a = 2n+f = 2n2f , where 1 ≤ 2f < 2. Note that n is negative when
a < 1. Also, 2n ≤ a < 2n+1 for all a.

In this article, we will often refer to the binary representation of some
non-negative real number r, denoted as: (rmrm−1 . . . r0.r−1r−2 . . .)2. The
bit ri is said to be at position i. rm is the most-significant-bit (MSB). The
radix-point (.) separates the integer and fractional part of r. The value of r
is given by:

rm(2m) + rm−1(2
m−1) + . . . + r0(2

0) + r−1

(
1

21

)
+ r−2

(
1

22

)
+ . . .

For example, in (110.101)2, (110)2 represents 6 and (0.101)2 represents 5/8 =
0.625, giving the complete value of 6.625 in decimal.

If a is an integer and stored as an integer type, we can check the position
of its MSB in the binary form. This bit position gives us the value of
n. If a is a real number stored as a floating-point of IEEE standard 754
(significand × 2exponent), again we can exploit the storage format to find n.

If we do not want to depend upon the storage format of a, we can find
n by other methods too. For example, if a ≥ 2, we can iteratively divide it
by 2 until a < 2, while counting the number of divisions needed (the count
is n). Similarly, if a < 1, we can iteratively multiply it by 2 until a ≥ 1 (the
count is (−n)). There can be other more efficient methods also.

We now come to the problem of finding f . Once we know n, we will divide
a by 2n to give us another real number x = a/2n = 2f , where 1 ≤ x < 2.
We need to find f = log x. There are a few algorithms known for this, and
this operation is sometimes also provided by the hardware itself. We will

Copyright c© 2021 Nitin Verma. All rights reserved.

1

https://mathsanew.com


discuss a simple algorithm which is based on very basic mathematics. It
finds f iteratively one bit at a time.

Bit-by-Bit Algorithm

The algorithm may have been discovered multiple times independently, but
appears to be first published in 1956 by D. R. Morrison [1]. Morrison pro-
vided a generic algorithm to find inverse of any function which meets certain
conditions, 2y being one such function. Note, log2(2

y) = y, so the inverse of
2y is the log2 function.

Since 0 ≤ f < 1, it can be written in binary form as: (0.b1b2b3 . . .)2,
where each bi is a bit (0 or 1) at position (−i). The algorithm makes use of
the below observations:

f = log x (1)

⇔ 2f = log(x2)

{since 2f = 2(0.b1b2b3 . . .)2 = (b1.b2b3 . . .)2}
⇔ (b1.b2b3 . . .)2 = log(x2)

So, x2 ≥ 2 implies b1 must be 1, and x2 < 2 implies b1 must be 0. Thus,
b1 can be deduced just by comparing x2 with 2. Further,

(b1.b2b3 . . .)2 = log(x2)

⇔ (0.b2b3 . . .)2 = log(x2)− (b1)2

= log

(
x2

2b1

)
= log(x2) or log

(
x2

2

)
{for b1 = 0 or 1 respectively}

If we now consider (0.b2b3 . . .)2 to be our new f , and x2 or x2/2 (based
on b1) to be our new x, then above relation translates to f = log x, which is
same as (1). Thus, bit b2 can be found by the same process we used to find
b1. Repeating this process m times will give us m bits of f up to bm, which
we can combine to give us an approximation for f as (0.b1b2b3 . . . bm)2.

Below is an implementation of this algorithm in C. Input x is assumed
to follow 1 ≤ x < 2. m specifies the number of bits to generate for f .

2



/* base-2 log bit-by-bit */

float log2_bbb(float x, int m)

{

int i, bits, bit;

if(x == 1)

return 0;

i = 0;

bits = 0;

/* loop-invariants:

P: f = log(x) (variable f is unknown and shown commented)

Q: 1 <= x < 2

R: ’bits’ contains i bits appended as ’bit’ */

while(i < m)

{

/* f <-- 2 * f */ /* maintain P */

x = x * x;

if(x >= 2)

{

bit = 1;

/* f <-- f - 1 */ /* maintain P */

x = x/2;

}

else

bit = 0;

bits = (bits << 1) | bit;

i++;

}

/* ’bits’ contains m bits from f, so f =(approx) bits/(2^m) */

return ((float)bits) / (1 << m);

}

3



There can be other variants of this algorithm. For example, we can write
it for computing logarithm in any base b (logb x). For that, the comparison
x2 ≥ 2 needs to be replaced by x2 ≥ b to deduce the bit. And for the new
x, division x2/2 needs to be replaced by x2/b.

Another variant is to treat f in any other radix d as (0.d1d2d3 . . .)d,
where each di is a digit in radix d. Then, instead of generating f one bit
at a time, we can generate it one (radix-d) digit at a time. For that, both
sides of (1) are multiplied by d, and instead of x2 we need to compute xd.
Then, we need to find digit d1 such that 2d1 ≤ xd < 2d1+1. After finding d1,
we will compute xd/2d1 instead of x2/2b1 for our new x.

Reversing an Exponentiation Algorithm

Since f = log2 x is equivalent to 2f = x, we can say that finding logarithm is
reverse of doing exponentiation. In an earlier article titled Some Algorithms
for Exponentiation [2], we discussed Binary (Left-to-Right) algorithm for
computing ab where a and b are positive integers.

Can we create a similar algorithm to compute 2f where f is not an
integer, but a real number with 0 ≤ f < 1. That is, can we iteratively
process the bits of f = (0.b1b2b3 . . .)2 to build-up 2f , as we did in the Binary
(Left-to-Right) algorithm to build-up ab? Below we see how this can be
done; note that it processes bits of f in right-to-left order:

4



float binary_exp(float f)

{

float x, y;

int m = 8, p, bit = 0;

/* say f = (0.b{-1} b{-2} b{-3} ... b{-m}) in binary (m bits) */

p = -(m+1);

y = 0;

x = 1;

/* loop-invariants:

Y: y consists of suffix bits of f from position p to -m;

thus y = 0.(bp b[p-1] ... b{-m}) (implies 0 <= y < 1).

X: x = 2^y (implies 1 <= x < 2) */

while(p < -1)

{

p = p + 1;

/* bit = {read the next bit of f, from position p} */

/* maintain Y */

y = (y + bit)/2;

/* maintain X */

if(bit)

x = x * 2;

x = sqrtf(x); /* sqrtf() computes the square-root */

}

/* p = -1 */

/* y = f */

/* x = 2^f */

return x;

}

It need not be an efficient way to compute 2f . But we wish to see if
this exponentiation algorithm, where f is given and 2f is computed, can
help us create an algorithm to compute f if 2f is given. Can we reverse the
execution of the loop in this method so that we can start with x = 2f (x
known, f unknown) and generate the bits of f one by one?

Suppose we know x at the end of an iteration, call it xe. Note that each
iteration maintains 1 ≤ x < 2. The value of x at the start of this iteration
must be xs = x2e or x2e/2 depending upon the bit processed. But xs too
must follow 1 ≤ xs < 2. So, xs = x2e iff 1 ≤ x2e < 2. And xs = x2e/2 iff

5



1 ≤ x2e/2 < 2, i.e. 2 ≤ x2e < 4. So, xs and hence the bit can be deduced
based on whether x2e ≥ 2 or not.

Thus we have found a way to reach at the starting state of an iteration
from its end; to reverse the execution of an iteration. Starting with the final
value of x(= 2f ), we can now execute all iterations in the reverse order, with
each iteration itself reversed as above. Below we see the loop effecting such
reversal:

p = -1;

/* variable y is not shown */

/* x = 2^f is given, 1 <= x < 2 */

while(p > -(m+1))

{

x = x * x;

if(x >= 2)

{

bit = 1;

x = x/2;

}

else

bit = 0;

/* ’bit’ is the bit of f at position p */

p = p - 1;

}

/* p = -(m+1) */

Thus we could find a method to generate the bits of f one by one. Notice
that this algorithm is same as the Bit-by-Bit algorithm we discussed earlier,
but we have arrived at it by reversing an exponentiation algorithm.

�

References

[1] D. R. Morrison. A Method for Computing Certain Inverse Functions.
Math. Comp. (AMS), Vol 10 (1956), 202–208. https://www.ams.org/
journals/mcom/1956-10-056/S0025-5718-1956-0083821-9.

[2] Nitin Verma. Some Algorithms for Exponentiation.
https://mathsanew.com/articles/

algorithms_for_exponentiation.pdf (2021).

6


