
Cycle Detection: Brent’s Algorithm

Nitin Verma
mathsanew.com

August 27, 2021

In an earlier article titled Cycle Detection: Floyd’s Algorithm [1], the
generic cycle detection problem was introduced, and it was solved via Floyd’s
algorithm. Now we will discuss the Brent’s Cycle Detection Algorithm for
this problem, named after R. P. Brent [2]. Refer to page 1 of article [1] for
the problem definition and related notations.

The Algorithm

First we observe that, there must exist integer r such that er belongs to
the cycle and er equals at least one element among its next r elements
(er+1, er+2, . . . , er+r). Specifically, any integer r satisfies this condition if
and only if:

(a) r ≥ l (er belongs to the cycle) and,

(b) r ≥ n (er equals any of its next r elements).

Note that, (r ≥ l and r ≥ n) can also be written as r ≥ max(l, n).

So, for any given l and n, all integers max(l, n) onwards satisfy the cri-
teria for r. The Brent’s algorithm attempts to find r which is the minimum
power of 2, 2p (p is a non-negative integer), such that 2p ≥ max(l, n). Now
onwards, we will use r to denote this specific integer 2p.

By finding r and locating er, the algorithm will have located some ele-
ment in the cycle (since er belongs to the cycle), and will then proceed to
find l and n.

The algorithm works as follows. It sequentially checks if the candidates
r′ = 20, 21, 22, . . ., satisfy the criteria for the desired r. That is, whether
er′ equals any of its next r′ elements or not. To do that, it maintains two

Copyright c© 2021 Nitin Verma. All rights reserved.

1

https://mathsanew.com

references M (mark) and R. For each r′, M is kept at er′ while R steps
through the next r′ elements comparing them with M (er′). Note that this
stepping of R will finally bring it at er′+r′ = e2r′ . So, for checking the next
candidate r′, which is 2r′, this reference R at e2r′ can be used to set the
mark M for that next candidate.

Note that a candidate r′ does not satisfy the criteria if, either (a) er′ is
outside the cycle (r′ < l), or (b) er′ is inside the cycle but is distinct from
its next r′ elements (r′ < n).

Following is an implementation of this algorithm in C. The above de-
scribed part of this method will be referred as “Cycle-Searching” (the other
part “Find l” will be discussed below). Whenever a reference, say R, is
updated to f(R), we will call it one “step” taken by R.

Note that when the desired r is reached, the value of n can be found by
counting the steps R has taken after er to reach the nearest element equaling
er.

/* Parameter f is a function pointer.

Output values of n and l are returned via pointers pn and pl.

The elements e{i} are referred using type "void *". So,

function f has input and output type as "void *". */

void brent(void *e0, void* f(void*), int *pn, int *pl)

{

void *R, *M, *R0;

int i, r, cycle_found, count, j, n, l;

/***** Cycle-Searching *****/

/* initializations for the loop below */

M = f(e0);

r = 1;

R = f(M);

i = 2;

cycle_found = (R == M);

/* outer-loop invariants:

1. M = e{r}

2. R = e{i}

3. (cycle_found AND (i = r + n) AND (R = M)) OR

(!cycle_found AND (i = 2r)) */

2

while(!cycle_found)

{

r = 2*r;

M = R;

/* Now, M = R = e{r}. R will take (upto) r steps till e{2r} */

/* inner-loop invariant: R = e{i} */

while(i < 2*r && !cycle_found)

{

R = f(R);

i = i + 1;

cycle_found = (R == M);

}

}

n = i - r;

/***** Find l *****/

/* (M = e{r}) holds */

if(r%n != 0)

{

j = r + n - r%n;

i = r;

while(i < j)

{

M = f(M);

i = i + 1;

}

/* (M = e{j}) holds */

}

/* (M = e{multiple-of-n}) holds */

R0 = e0;

count = 0;

while(R0 != M)

{

R0 = f(R0);

M = f(M);

count++;

}

3

/* (R0 = M = e{l}) holds */

l = count;

*pn = n;

*pl = l;

}

This algorithm finds minimum power of 2, r = 2p, such that 2p ≥
max(l, n). Since 2p is the minimum possible, we must have 2p−1 < max(l, n),
which can also be written as 2p < 2 ·max(l, n). So,

r < 2 ·max(l, n)

Also, this algorithm (the cycle-searching part) steps R total r+n times. So,
the number of calls to f performed by it is upper-bounded by:

2 ·max(l, n) + n

Finding l

We initialize two references R0 and Rn at e0 and en respectively. Rn can be
placed at en by stepping n times from e0. Now, after l steps, R0 will be at
index l and Rn will be at index (due to equation (1) in [1]):

l + (n + l − l) mod n = l

So, to find l, we can iteratively step R0 and Rn till they meet, while counting
the steps. This step count will be l.

Alternatively, we can use another more efficient approach. When the
cycle-searching loop terminates, M is at er. We will first place M at ej ,
where j is a multiple of n. If n | r, we are done with j = r. Otherwise,
we use the fact that (r − r mod n), and hence (r + n− r mod n), is always
a multiple of n. So, we step M (n − r mod n) times to bring it at ej with
j = (r + n− r mod n).

Now, initialize a reference R0 at e0. After l steps, it will be at index l.
Also, M , which is at ej , after l steps will be at index (due to equation (1)
in [1]):

l + (j + l − l) mod n = l + j mod n = l {since n | j}

So, to find l, we can iteratively step R0 and M till they meet, while counting
the steps. This step count will be l.

4

The “Find l” part in method brent() implements this approach.

The earlier approach steps R0 and Rn l and n + l times respectively.
This approach steps R0 l times, but steps M l or (n − r mod n) + l times
(based on n | r or not). Note that, (n− r mod n) < n when n - r.

�

References

[1] Nitin Verma. Cycle Detection: Floyd’s Algorithm.
https://mathsanew.com/articles/cycle_detection.pdf (2021).

[2] R. P. Brent. An Improved Monte Carlo Factorization Algorithm. BIT
Numer. Math., Vol 20 (1980), 176–184.
https://maths-people.anu.edu.au/~brent/pd/rpb051i.pdf.

5

