Cycle Detection: Brent's Algorithm

Nitin Verma
mathsanew.com

August 27, 2021

In an earlier article titled Cycle Detection: Floyd's Algorithm [1], the generic cycle detection problem was introduced, and it was solved via Floyd's algorithm. Now we will discuss the Brent's Cycle Detection Algorithm for this problem, named after R. P. Brent [2]. Refer to page 1 of article [1] for the problem definition and related notations.

The Algorithm

First we observe that, there must exist integer r such that e_{r} belongs to the cycle and e_{r} equals at least one element among its next r elements $\left(e_{r+1}, e_{r+2}, \ldots, e_{r+r}\right)$. Specifically, any integer r satisfies this condition if and only if:
(a) $r \geq l$ (e_{r} belongs to the cycle) and,
(b) $r \geq n$ (e_{r} equals any of its next r elements).

Note that, $(r \geq l$ and $r \geq n)$ can also be written as $r \geq \max (l, n)$.
So, for any given l and n, all integers $\max (l, n)$ onwards satisfy the criteria for r. The Brent's algorithm attempts to find r which is the minimum power of $2,2^{p}$ (p is a non-negative integer), such that $2^{p} \geq \max (l, n)$. Now onwards, we will use r to denote this specific integer 2^{p}.

By finding r and locating e_{r}, the algorithm will have located some element in the cycle (since e_{r} belongs to the cycle), and will then proceed to find l and n.

The algorithm works as follows. It sequentially checks if the candidates $r^{\prime}=2^{0}, 2^{1}, 2^{2}, \ldots$, satisfy the criteria for the desired r. That is, whether $e_{r^{\prime}}$ equals any of its next r^{\prime} elements or not. To do that, it maintains two

Copyright © 2021 Nitin Verma. All rights reserved.
references M (mark) and R. For each r^{\prime}, M is kept at $e_{r^{\prime}}$ while R steps through the next r^{\prime} elements comparing them with $M\left(e_{r^{\prime}}\right)$. Note that this stepping of R will finally bring it at $e_{r^{\prime}+r^{\prime}}=e_{2 r^{\prime}}$. So, for checking the next candidate r^{\prime}, which is $2 r^{\prime}$, this reference R at $e_{2 r^{\prime}}$ can be used to set the mark M for that next candidate.

Note that a candidate r^{\prime} does not satisfy the criteria if, either (a) $e_{r^{\prime}}$ is outside the cycle $\left(r^{\prime}<l\right)$, or (b) $e_{r^{\prime}}$ is inside the cycle but is distinct from its next r^{\prime} elements $\left(r^{\prime}<n\right)$.

Following is an implementation of this algorithm in C. The above described part of this method will be referred as "Cycle-Searching" (the other part "Find l " will be discussed below). Whenever a reference, say R, is updated to $f(R)$, we will call it one "step" taken by R.

Note that when the desired r is reached, the value of n can be found by counting the steps R has taken after e_{r} to reach the nearest element equaling e_{r}.

```
/* Parameter f is a function pointer.
    Output values of n and l are returned via pointers pn and pl.
    The elements e{i} are referred using type "void *". So,
    function f has input and output type as "void *". */
void brent(void *eO, void* f(void*), int *pn, int *pl)
{
    void *R, *M, *RO;
    int i, r, cycle_found, count, j, n, l;
    /***** Cycle-Searching *****/
    /* initializations for the loop below */
    M = f(e0);
    r = 1;
    R = f(M);
    i = 2;
    cycle_found = (R == M);
    /* outer-loop invariants:
            1. M = e{r}
            2. R=e{i}
            3. (cycle_found AND (i = r + n) AND (R = M)) OR
                (!cycle_found AND (i = 2r)) */
```

```
while(!cycle_found)
{
    r = 2*r;
    M = R;
    /* Now, M = R = e{r}. R will take (upto) r steps till e{2r} */
    /* inner-loop invariant: R = e{i} */
    while(i < 2*r && !cycle_found)
    {
        R = f(R);
        i = i + 1;
        cycle_found = (R == M);
    }
}
n = i - r;
/***** Find l *****/
/* (M = e{r}) holds */
if(r%n != 0)
{
    j = r + n - r%n;
    i = r;
    while(i < j)
    {
        M = f(M);
        i = i + 1;
    }
    /* (M = e{j}) holds */
}
/* (M = e{multiple-of-n}) holds */
RO = e0;
count = 0;
while(RO != M)
{
    RO = f(RO);
    M = f(M);
    count++;
}
```

```
    /* (RO = M = e{l}) holds */
    l = count;
    *pn = n;
    *pl = l;
}
```

This algorithm finds minimum power of $2, r=2^{p}$, such that $2^{p} \geq$ $\max (l, n)$. Since 2^{p} is the minimum possible, we must have $2^{p-1}<\max (l, n)$, which can also be written as $2^{p}<2 \cdot \max (l, n)$. So,

$$
r<2 \cdot \max (l, n)
$$

Also, this algorithm (the cycle-searching part) steps R total $r+n$ times. So, the number of calls to f performed by it is upper-bounded by:

$$
2 \cdot \max (l, n)+n
$$

Finding l

We initialize two references R_{0} and R_{n} at e_{0} and e_{n} respectively. R_{n} can be placed at e_{n} by stepping n times from e_{0}. Now, after l steps, R_{0} will be at index l and R_{n} will be at index (due to equation (1) in [1]):

$$
l+(n+l-l) \bmod n=l
$$

So, to find l, we can iteratively step R_{0} and R_{n} till they meet, while counting the steps. This step count will be l.

Alternatively, we can use another more efficient approach. When the cycle-searching loop terminates, M is at e_{r}. We will first place M at e_{j}, where j is a multiple of n. If $n \mid r$, we are done with $j=r$. Otherwise, we use the fact that $(r-r \bmod n)$, and hence $(r+n-r \bmod n)$, is always a multiple of n. So, we step $M(n-r \bmod n)$ times to bring it at e_{j} with $j=(r+n-r \bmod n)$.

Now, initialize a reference R_{0} at e_{0}. After l steps, it will be at index l. Also, M, which is at e_{j}, after l steps will be at index (due to equation (1) in [1]):

$$
l+(j+l-l) \bmod n=l+j \bmod n=l \quad\{\text { since } n \mid j\}
$$

So, to find l, we can iteratively step R_{0} and M till they meet, while counting the steps. This step count will be l.

The "Find l " part in method brent() implements this approach.
The earlier approach steps R_{0} and $R_{n} l$ and $n+l$ times respectively. This approach steps $R_{0} l$ times, but steps $M l$ or $(n-r \bmod n)+l$ times (based on $n \mid r$ or not). Note that, $(n-r \bmod n)<n$ when $n \nmid r$.

References

[1] Nitin Verma. Cycle Detection: Floyd's Algorithm. https://mathsanew.com/articles/cycle_detection.pdf (2021).
[2] R. P. Brent. An Improved Monte Carlo Factorization Algorithm. BIT Numer. Math., Vol 20 (1980), 176-184.
https://maths-people.anu.edu.au/~brent/pd/rpb051i.pdf.

