
Solving 8-Queens Problem by Generating

Permutations

Nitin Verma
mathsanew.com

December 11, 2021

The well-known 8-Queens Problem is to place 8 queens on an 8×8 chess-
board such that no queen attacks any other queen. It is equivalent to the
condition that on the row, column and the two diagonals of a queen’s square,
there can be no other queen.

We can identify the 8 rows and 8 columns using integers {0, 1, 2, . . . , 7}
as shown in the figure below. Now onward we will use Z8 to denote the set
of 8 integers: {0, 1, 2, . . . , 7}. There are two types of diagonals: ascending
and descending ; the figure shows one ascending and one descending diagonal
marked with -3 and 8 respectively (these identifiers are described below).

Figure 1: Numbering Rows, Columns and Diagonals of a Chessboard

Rows

Columns

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

8

-3

Copyright c© 2021 Nitin Verma. All rights reserved.

1

https://mathsanew.com


Let us denote the square on row r and column c as square (r, c). Note
that on any given ascending diagonal, any square (r, c) has a fixed value of
(r − c). For the 15 such diagonals, these values are distinct and range from
-7 to 7. Similarly, on any given descending diagonal, any square (r, c) has
a fixed value of (r + c). For the 15 such diagonals, these values are distinct
and range from 0 to 14.

Thus we can uniquely identify the 15 ascending and 15 descending diag-
onals using integers {−7,−6, . . . , 6, 7} and {0, 1, 2, . . . , 14} respectively.

Since a row cannot have more than one queen, and there are 8 rows and
8 queens, each row must have exactly one queen. Similarly, each column
must have exactly one queen. So a solution placement of the 8 queens can
simply be specified by mentioning for each row the column number where
that row’s queen is placed. Specifically, the solution is a permutation of all
the integers from Z8, (a0, a1, a2, . . . , a7), where ar is the column number for
the queen on row r.

Such permutation must also reflect the constraint that two queens cannot
share a diagonal. Note that for any r, values (r − ar) and (r + ar) would
identify respectively the ascending and descending diagonal occupied by the
queen on row r. We can in fact express the 8-Queens Problem as a simple
abstract problem which deals only with integers:

Find a permutation of all the integers from Z8, (a0, a1, a2, . . . , a7), such
that for all r, (r − ar) values are distinct, and (r + ar) values are distinct
too.

With this abstract version, we no longer need to deal with the objects
(chessboard, queens, their associated geometry) and rules of the original
problem; we are left only with the necessary mathematical conditions un-
derlying the problem.

In the rest of this discussion, we will be solving this abstract problem,
the solution to which easily maps to the 8-Queens Problem. The constraint
of (r − ar) and (r + ar) distinctness will be referred as constraint C.

An Algorithm

A trivial method is to generate all the 8! permutations of Z8 (using some
permutation generation algorithm) and for each permutation check whether
it satisfies the constraint C.

2



But a simple observation can help us optimize. Any permutation of m
integers from Z8 (m < 8) is actually a prefix of some complete permutations
of the 8 integers. Let us refer any such permutation as “permutation-prefix”.
If a permutation-prefix does not satisfy constraint C for its m elements, then
any permutation of the 8 integers starting with this permutation-prefix will
not satisfy the constraint too; there are (8 − m)! such permutations. It
means, we will not need to check these (8−m)! permutations individually,
and can reject them as a whole.

To utilize this observation, we will generate permutations in such a way
that all permutations starting with a common permutation-prefix (of any
length) get generated together as a separable subtask. So, if a permutation-
prefix is found to violate the constraint, we can easily skip the generation
(and checking) of all permutations sharing this prefix.

One such way of generating permutations has been shown below (for
integers in Z8), implemented in C. It need not be an efficient permutation
generation algorithm, but is simple to understand. permute(s) is supposed
to generate all permutations of the integers not already placed till index
(s − 1), over indices s to N − 1. print() prints the complete permutation
from array a.

#define N 8

/* below array declarations assume N = 8 */

int a[8];

/* boolean array to track the integers (0 to 7) which have

already been placed in the permutation being constructed */

char placed[] = {0, 0, 0, 0, 0, 0, 0, 0};

void permute(int s)

{

int i;

if(s == N)

{

print();

return;

}

3



for(i = 0; i < N; i++)

{

if(!placed[i])

{

a[s] = i;

placed[i] = 1;

permute(s+1);

placed[i] = 0;

}

}

}

void print()

{

int i;

for(i = 0; i < N; i++)

printf("%d ", a[i]);

printf("\n");

}

We will now modify this permutation generation method to solve the 8-
Queens Problem. As mentioned earlier, if a permutation-prefix violates the
constraint, we will skip generating (and checking) all permutations sharing
this prefix. This skipping becomes easy here because all such permutations
would get generated under a single recursive call permute(s + 1).

To record the (r − ar) and (r + ar) values already taken by the current
permutation-prefix, we will use two boolean arrays. The modified method
is shown below with all added lines marked using /* 8Q */. Method init()
should be called first for doing initializations.

/* boolean arrays to track "r plus a[r]" (rpar) which ranges from

0 to 14, and "r minus a[r]" (rmar) which ranges from -7 to 7.

The values of (r+a[r]) and (r-a[r]+7) will be used to index

into these arrays. */

char rpar[15], rmar[15];

/* can the permutation-prefix be extended by placing "e" at

index "r", without violating constraint C ? */

#define prefix_extensible(r, e) (!rpar[r+e] && !rmar[r-e+7])

/* the permutation-prefix was extended by including index "r" */

#define prefix_extended(r) {rpar[r+a[r]] = 1; rmar[r-a[r]+7] = 1;}

4



/* the permutation-prefix was reduced by excluding index "r" */

#define prefix_reduced(r) {rpar[r+a[r]] = 0; rmar[r-a[r]+7] = 0;}

void init()

{

memset(rpar, 0, 15*sizeof(char));

memset(rmar, 0, 15*sizeof(char));

}

void permute_8queens(int s)

{

int i;

if(s == N)

{

print();

return;

}

for(i = 0; i < N; i++)

{

if(!placed[i])

{

if(!prefix_extensible(s, i)) /* 8Q */

continue; /* 8Q */

a[s] = i;

placed[i] = 1;

prefix_extended(s); /* 8Q */

permute_8queens(s+1);

placed[i] = 0;

prefix_reduced(s); /* 8Q */

}

}

}

For placing element at index s, this permutation generation algorithm
searches for an element which is not already placed till index (s − 1). We
will now see a more efficient algorithm to generate permutations.

A Swapping Algorithm

An earlier article titled Generating Permutations with Recursion [1] dis-
cusses a permutation generation algorithm by C. T. Fike which can be mod-

5



ified to solve the 8-Queens Problem (refer method fike() in its section “Fike’s
Algorithm”). Instead of searching, it systematically locates the next element
to place at index s.

The modified method is shown below with all added lines marked using
/* 8Q */. Unlike permute(), array a needs to be initialized in this case. For
other initializations, the earlier shown init() method should be used.

int a[] = {0, 1, 2, 3, 4, 5, 6, 7};

#define SWAP(i, j) {int t; t = a[i]; a[i] = a[j]; a[j] = t;}

void fike_8queens(int s)

{

int i;

if(s == N-1)

{

if(prefix_extensible(s, a[s])) /* 8Q */

print();

return;

}

for(i = 0; i < N-s; i++)

{

if(!prefix_extensible(s, a[s+i])) /* 8Q */

continue; /* 8Q */

if(i > 0)

SWAP(s, s+i);

prefix_extended(s); /* 8Q */

fike_8queens(s+1);

prefix_reduced(s); /* 8Q */

if(i > 0)

SWAP(s, s+i);

}

}

Notice how, adding a few steps to the two permutation generation meth-
ods (permute() and fike()), gave us methods to solve an initially dissimilar
8-Queens Problem.

6



For both these methods, we could skip the recursive call (for argument
(s + 1)) whenever required and could still uphold the correctness of the
permutation generation logic with ease. We may be able to use other per-
mutation generation algorithms too (e.g. from article [1]) for the 8-Queens
Problem, but introduction of such skipping may demand other changes to
ensure their correctness.

�

References

[1] Nitin Verma. Generating Permutations with Recursion. https://
mathsanew.com/articles/permutations_with_recursion.pdf.

7


