
Extended Euclid’s Algorithm

Nitin Verma
mathsanew.com

March 25, 2021

In an earlier article titled Euclid’s Algorithm for GCD ([1]), we have
discussed the Euclid’s Algorithm for finding the GCD of two non-negative
integers. In section “Bézout’s Identity”, we arrived at this well-known the-
orem:

Theorem 1 (Bézout’s Identity). For any non-negative integers A and B,
there exist integers x, y such that:

Ax + By = gcd(A,B)

Now, we will investigate how, for a given pair (A,B), such a pair (x, y)
can be found. We will frequently refer to the program and some relations
established in article [1].

In section “A Generic Loop-Invariant” of [1], we defined property (1)
for predicates and argued that, with any such predicate R and variables a
and b in the Euclid’s Algorithm program (page 2), R(a) ∧ R(b) becomes a
loop-invariant.

In section “Bézout’s Identity” of [1], we introduced a predicate for non-
negative integers z:

R(z) : (z is a linear combination of A and B)

and found that it satisfies the property (1), hence making R(a)∧R(b) a loop-
invariant in that program. Specifically, after every iteration R(a)∧R(b) must
hold, which means, a and b always remain a linear combination of A and B.
We can express this as below, where s, t, u, v are some integers:

As + Bt = a

Au + Bv = b

Copyright c© 2021 Nitin Verma. All rights reserved.

1

https://mathsanew.com


We are looking at the problem of finding integers (x, y) in the Bézout’s
Identity. Notice that one of the variables a and b “incrementally” becomes
the gcd(A,B) during the program. Also, during every such modification
to these variables, they still remain a linear combination of A and B. So,
we can keep computing the corresponding s, t, u, v as and when a and b are
modified. This would ensure that, when one of them (say, a) becomes the
gcd, we must have found the desired (x, y) (as (s, t)).

Let us try modifying the Euclid’s Algorithm program in this direction.
We introduce integer variables s, t, u, v and need to maintain the invariants:

S : (As + Bt = a)

T : (Au + Bv = b)

(Prof. E W Dijkstra in his EWD 1158 ([2]) used such loop-invariants to
create a program so as to constructively-prove Bézout’s Identity.)

It is trivial to establish these invariants just before the loop starts (when
a = A, b = B), by doing:

s← 1, t← 0, u← 0, v ← 1

Now, we need to take care of modifications to a and b which happen
during the loop. Let us consider a (case of b is similar). The modification
is of the form: a← a mod b. But a mod b = a− qb, where q = ba/bc due to
the Division Theorem. How can we compute the new values of s and t so as
to maintain S? The new value of a, i.e. a − qb, can actually be expressed
using the relations from invariants S and T as:

a− qb = (As + Bt)− q(Au + Bv) = A(s− qu) + B(t− qv)

So, S can be maintained by doing s ← s − qu, t ← t − qv. Similarly,
whenever b is modified to b mod a = b − qa, where q = bb/ac, T can be
maintained by doing u← u− qs, v ← v − qt.

We have thus found a way to establish S ∧ T before the loop starts and
after each iteration where a or b is modified. S ∧ T is a new loop-invariant.

When the loop terminates, one of the variables a or b will contain the
gcd(A,B). Suppose, a = gcd(A,B), b = 0 (the other case is similar). Then,
due to loop-invariant S: As + Bt = a = gcd(A,B). So, (s, t) would be the
desired integers (x, y) of Bézout’s Identity.

The modified program is shown below. This algorithm is also known as
“Extended Euclid’s Algorithm”.

2



int euclid_extended(const int A, const int B)

{

int a, b, s, t, u, v, q;

a = A; b = B;

s = 1; t = 0; u = 0; v = 1;

while(a != 0 && b != 0)

{

if(a > b)

{

q = a/b;

a = a - q*b; /* same as a%b */

s = s - q*u;

t = t - q*v;

}

else

{

q = b/a;

b = b - q*a; /* same as b%a */

u = u - q*s;

v = v - q*t;

}

}

if(a != 0)

{

printf("Bezout’s Identity (x,y)=(%d,%d)\n", s, t);

return a;

}

else

{

printf("Bezout’s Identity (x,y)=(%d,%d)\n", u, v);

return b;

}

}

�

References

[1] Nitin Verma. Euclid’s Algorithm for GCD.
https://mathsanew.com/articles/euclid_algorithm_for_gcd.pdf

(2021).

[2] E W Dijkstra. A bagatelle on Euclid’s Algorithm.
https://www.cs.utexas.edu/users/EWD/ewd11xx/EWD1158.PDF

EWD 1158 (1993).

3


