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Consider the multiples of the Golden-Ratio φ: φ, 2φ, 3φ, . . .. What can
we say about the distribution of their fractional-parts in interval [0,1]? In
this article we find out how, due to the Three Distance Theorem and prop-
erties of the Golden-Ratio, these values are well-distributed.

Let α < 1 be any positive real number and N any positive integer. For
any real number x, let {x} denote the fractional part of x, i.e. {x} = x−bxc.
What can we say about distribution of values:

{α}, {2α}, . . . , {Nα} (1)

in the interval [0,1]?

In an earlier article titled Three Distance Theorem [1], we analyzed such
distribution for any general α. The basic statement of the Three Distance
Theorem is very simple. It says that, if the values in (1) are sorted and we
find the differences of all neighboring values (including interval boundaries
0 and 1), which we can call “gap lengths”, then there are either two or three
distinct gap-lengths. We also learned how these gap-lengths are related to
the Simple Continued Fraction of α. In this article we will make use of the
observations and theorems from [1], for the case of α = φ.

We will often refer the values in (1) as {mα} wherem is a positive integer.
The Simple Continued Fraction will be referred as “Continued Fraction”.

For any positive integers m and n, {m(α + n)} = {mα}. This is the
reason that, in [1], it was sufficient to consider only α < 1. For the same
reason, our analysis here for φ ≈ 1.6180339 . . . also applies exactly to φ −
1, φ+ 1, φ+ 2 etc.

Figure 1 shows the values of {mφ} for different values of N . Due to
the Three Distance Theorem, we expect to see either two or three distinct
gap-lengths.

Copyright c© 2021 Nitin Verma. All rights reserved.

1

https://mathsanew.com


Figure 1: {mφ} for some N
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Continued Fraction of φ

We first note that φ is the positive solution to the quadratic equation:

x

1
=

1 + x

x
⇔ x2 − x− 1 = 0

So, φ = (1 +
√

5)/2, and

φ = 1 +
1

φ

Please refer to the conventions used in section “Background” of [1] about
continued fractions. The continued fraction of φ is:

φ = 1 +
1

1 + 1
1+...

= [1; 1, 1, 1, . . .]

which is special since all ai terms are 1.

We define p−1 = 1 and q−1 = 0. For this continued fraction, we have
p0 = 1, q0 = 1. And due to the recurrence-relation (2) in [1], for all k ≥ 0:

pk+1 = ak+1pk + pk−1 = pk + pk−1

qk+1 = ak+1qk + qk−1 = qk + qk−1
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Thus, for this special case of φ, the sequences of pk and qk values each fol-
low the same recurrence-relation as the Fibonacci Sequence, which is defined
as:

F0 = 0

F1 = 1

Fn = Fn−2 + Fn−1 for all n ≥ 2

So, in the continued fraction of φ, for all k ≥ 0:

pk = Fk+2

qk = Fk+1

Thus the convergents which approximate φ are: pk/qk = Fk+2/Fk+1.

Now, consider any integer N ≥ 1 and its corresponding unique integers
t, r and s, as defined by relations (3) and (4) in [1]. The relation (3) in [1],
which defines t for N , now becomes:

qt−1 + qt ≤ N < qt + qt+1

⇔ Ft + Ft+1 ≤ N < Ft+1 + Ft+2

⇔ Ft+2 ≤ N < Ft+3 (2)

So, with α = φ, the t ≥ 0 corresponding to N is such that Ft+2 is the
largest Fibonacci number not exceeding N .

The range of r as defined by relation (4) in [1] is: 1 ≤ r ≤ at+1. With
φ, at+1 = 1 for all t ≥ 0. So in this case we have r = 1 for all N .

The Three Gap-Lengths

We will be using a few facts from the theory of continued fractions. Say,
pk/qk represent the convergents from the continued fraction of a real number
α > 0. Then, it is known that for all k ≥ 0:∣∣∣∣α− pk

qk

∣∣∣∣ < 1

qkqk+1

⇔ |qkα− pk| <
1

qk+1

For all k ≥ 0, since qk+1 ≥ 1, so:

|qkα− pk| < 1
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It is also known that, for all k ≥ 0:

α− pk
qk

=

∣∣∣∣α− pk
qk

∣∣∣∣ (−1)k

⇔ qkα− pk = |qkα− pk|(−1)k

Due to above relations, and the fact that any integer can be added or sub-
tracted inside {}, {qkα} can also be written as:

{qkα} = {qkα− pk}
= {1 + qkα− pk}
= {1 + |qkα− pk|(−1)k}
= qkα− pk (for even k)

{1− (pk − qkα)} = 1− (pk − qkα) (for odd k) (3)

Now we compute the gap-lengths for φ. As defined in section “Three
Distance Theorem” of [1], we will use u1 and uN to refer to the two “corner
points”.

Consider the case when t is even. Using theorem 4 in [1], the u1 and uN
for φ will be:

u1 = qt = Ft+1

uN = qt−1 + rqt = Ft + (1)Ft+1 = Ft+2

We noted earlier, due to relation (2), that Ft+2 is the largest Fibonacci
number not exceeding N . Now we see that the two corner points correspond
to the two largest Fibonacci numbers not exceeding N .

Now we use theorem 2 in [1] to find the three gap-lengths, which are
specified as L1, L2 and L1 + L2 in that theorem.

L1 = {u1α}
= {qtα}
= qtα− pt (due to (3) with t even)

= Ft+1φ− Ft+2

L2 = 1− {uNα}
= 1− {qt+1α} (since Ft+2 is also qt+1)

= 1− (1− (pt+1 − qt+1α)) (due to (3) with t+ 1 odd)

= pt+1 − qt+1α

= Ft+3 − Ft+2φ
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L1 + L2 = Ft+1φ− Ft+2 + Ft+3 − Ft+2φ = Ft+1 − Ftφ

This was for even t. Similarly, it can be proved that for t as odd, the
expressions of the three lengths will be:

L1 = −(Ft+3 − Ft+2φ)

L2 = −(Ft+1φ− Ft+2)

L1 + L2 = −(Ft+1 − Ftφ)

Corollary 1. The two smallest gap-lengths (L1 and L2, in this order or
reverse) for α = φ are:

|Ft+2φ− Ft+3| and |Ft+1φ− Ft+2|

where, Ft+2 (t ≥ 0) is the largest Fibonacci number not exceeding N . The
gap-length L1 + L2 can also be written as:

|Ftφ− Ft+1|.

Note how u1 and uN , and hence the three gap-lengths, change only when
t changes. Due to the relation (2) which defines t, that occurs whenever N
attains any Fibonacci number.

Note that, gaps of length L1+L2 need not exist for all N . From corollary
5 in [1], gap-length L1 + L2 will not exist if s = qt − 1. For case of φ, that
can be rewritten as:

s = qt − 1

⇔ N − qt−1 − rqt = qt − 1 (due to relation (4) in [1])

⇔ N − Ft − Ft+1 = Ft+1 − 1

⇔ N = Ft+3 − 1

Corollary 2. For α = φ, the gap-length of L1 +L2 does not exist whenever
N + 1 is some Fibonacci number.

So, in Figure 1 for N = 12, which is F7 − 1, we should expect only two
distinct gap-lengths.

5



Alternate Form

For any integer n > 0, the expression Fnφ−Fn+1 can be repeatedly expanded
as below:

Fnφ− Fn+1 = Fnφ− Fn−1 − Fn

= Fn(φ− 1)− Fn−1

=
Fn

φ
− Fn−1 (since φ− 1 = 1/φ)

=

(
− 1

φ

)
(Fn−1φ− Fn) (now, repeatedly expand as above)

=

(
− 1

φ

)2

(Fn−2φ− Fn−1)

=

(
− 1

φ

)3

(Fn−3φ− Fn−2)

. . .

. . .

=

(
− 1

φ

)n

(F0φ− F1)

= −
(
− 1

φ

)n

(4)

So, the three gap-lengths in corollary 1 can also be expressed as:

|Ft+2φ− Ft+3| =
1

φt+2

|Ft+1φ− Ft+2| =
1

φt+1

|Ftφ− Ft+1| =
1

φt
(5)

Ratio of the Gap-Lengths

It is evident from relation (5) that the mutual ratio of the gap-lengths is
itself the golden-ratio φ. This is an interesting and useful property of the
golden-ratio.

Note that for any general real number α, although there are only two
or three gap-lengths always, but the lengths need not be in a ratio (large
to small) close to 1 or 2. But for α = φ, we found that they are always in
the ratio φ ≈ 1.6. So, the lengths are not very disproportionate with each
other.
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In fact, from book [2], chapter 6.4 “Hashing”, exercise 9 we learn that —
only when {α} = 1/φ or 1/φ2 (note that 1/φ = φ−1, and 1/φ2 = 1−1/φ), do
we have the two smallest gap-lengths in ratio (large to small) not exceeding
2 for any N number of values. For all other α, this ratio will exceed 2 for
some N .

It is this property of φ which makes it unique among all real numbers
with regard to the “closeness” of the gap-lengths. So, if we are looking to
make the distribution of {mα} in [0,1] as uniform as possible for all N , then
{α} = 1/φ or 1/φ2 are good choices.

In Figure 1, we observe that the distribution of {mφ} for N = 100 has
good uniformity. There are no cluster of values around any point.
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