
Implementing Basic Arithmetic for Large Integers:

Division

Nitin Verma
mathsanew.com

June 18, 2021

This article is a continuation of the earlier one titled Implementing Ba-
sic Arithmetic for Large Integers: Introduction [1], which introduced how
arbitrarily large integers along with basic arithmetic operations can be im-
plemented via a program. It discussed the bigint structure for such large
integers, the operations of addition, subtraction and printing, and also in-
cluded the source code of all common internal methods. Multiplication
operation was discussed in a subsequent article [2].

Now we look into the division operation, using Schoolbook Division Al-
gorithm. We will be frequently using the concepts and definitions from [1].

Example with Decimal Numerals

We first look at an example of division of decimal numerals using the school-
book algorithm, also known as Long Division Algorithm.

0 4 0 3 6

3 6 5
)

0 1 4 7 3 4 9 1

0

1 4 7 3

1 4 6 0

0 1 3 4

0

1 3 4 9

1 0 9 5

2 5 4 1

2 1 9 0

3 5 1

Copyright c© 2021 Nitin Verma. All rights reserved.

1

https://mathsanew.com

It has been presented slightly differently. First, the dividend has been
prefixed with a 0. Second, the steps which generate a digit 0 in quotient
have been shown explicitly like any other step; this is so even for the initial
0 in the quotient.

Each digit of the generated quotient will be referred as a “quotient-
digit”. After each subtraction, we bring down the next dividend-digit to
append to the subtraction result. The value thus formed is divided by the
divisor to obtain the next quotient-digit; so it is like “dividend” of a par-
ticular iteration. We will be referring such values as “Iteration’s Dividend”,
abbreviated as “IDD”. In this example 1473, 0134, 1349, 2541 are all IDD
of their respective iteration.

To allow us to view this algorithm as an iterative process which repeats
the same kind of generic step, we can also call the initial prefix digits taken
from the input dividend as an IDD. So, in this example, 0147 is also an IDD.

Note that, in this example of a 3-digit divisor, all the IDDs are up to
3 + 1 = 4 digits. Those IDDs which have less than 4 digits have been
prefixed with 0s to make their width 4, e.g. 0134. In general, for a divisor
b of nb digits, we will always be treating the IDDs as having width nb + 1,
by prefixing some 0s if necessary. This convention will help us in our later
discussion.

Note that the initial IDD always starts with a 0, followed by nb digits
taken from the dividend.

Long-Division as an Iterative Algorithm

Let us denote the dividend by a = (ana−1ana−2 . . . a1a0) having na digits,
and the divisor by b = (bnb−1bnb−2 . . . b1b0) having nb digits, in base B
numeral system. The case when na < nb simply implies the quotient is 0
and remainder is a. So, we only need to consider the other case, na ≥ nb.

The long-division algorithm can be seen as an iterative process where
each iteration generates exactly one quotient-digit. In each iteration, the
“current” IDD x, having width nb + 1 is considered and a digit d needs to
be found such that:

bd ≤ x (1)

b(d + 1) > x

Once this quotient-digit d is found, subtraction (x − bd) is done and
the next digit from a is suffixed to the result, to form the next IDD. This

2

continues until there are no more digits to bring down from a. At that point,
the subtraction result, (x− bd), is the remainder of this division.

Note that the result of subtraction t = (x− bd) in any iteration follows:

t = x− bd < b(d + 1)− bd = b

i.e. t ≤ b− 1. So, t has at most nb digits.

The next IDD, which is formed by suffixing a digit (say, ai) from a to t
is (tB + ai), and must have at most nb + 1 digits. Also, it must follow:

tB + ai ≤ (b− 1)B + (B − 1) = bB − 1 < bB

The initial IDD is also chosen as having nb digits from the dividend, and
must be less than bB, which has nb+1 digits. So, we can conclude that every
IDD must have at most nb + 1 digits, and must be less than bB. Though, as
mentioned earlier, we will always be treating them as having width nb + 1.

Further, any number d which satisfies (1) must follow d ≤ x/b < bB/b =
B. That is, d ≤ B − 1, and so d must be a single digit number.

Now we look into the problem of computing quotient-digit d in each
iteration.

Computing a Quotient-Digit

When we perform long-division manually for decimal numerals, we usually
depend on trial-and-error to find a quotient-digit d. If the IDD is less than
the divisor, d is simply 0. Otherwise, we can make a guess about d based
on some initial digits of the divisor and the IDD. Then we need to multiply
guess d with the divisor to check if the guess is correct. If incorrect, we
make another guess and so on. In our earlier example, for IDD 1349, the
guess of d = 4, based simply on 13/3 (13 from 1349, 3 from 365) is incorrect
(365 · 4 = 1460 exceeds 1349) and needs another try with d = 3.

We need to make this trial-and-error method efficient (requiring less
number of corrections) and well-defined, for any base B numeral system.
We will be discussing a method proposed by Pope and Stein in [3], which is
also described in Knuth’s book [4] (section Multiple Precision Arithmetic).
To guess d, it uses the first digit of b and first two digits of the IDD (which,
as mentioned earlier, is treated as having width nb + 1).

3

A variant of this method which uses first two digits of b and first three
digits of the IDD has been discussed by Hansen in [5], which is also a good re-
source on this topic. The theorems behind this variant have been attributed
to Krishnamurthy and Nandi [6].

Let us denote the IDD of some iteration by x = (xnb
xnb−1 . . . x1x0),

where xnb
, xnb−1 etc may be 0. In favor of simpler symbols, we will denote

xnb
, xnb−1 as y, z and bnb−1 (the MSD of b) as e. The 2-digit number formed

by y and z will be denoted as (yz).

Before we proceed further, we will make some observations about mul-
tiplication of b by a single digit s, that will help us in the discussion below.
Such multiplication will be referred as “multiplication bs{s = . . .}” with s
as specified.

We can use the schoolbook’s multiplication method to help us under-
stand this:

e bnb−2 bnb−3 . . . b1 b0

× s

u v tnb−2 tnb−3 . . . t1 t0

Please refer to article [2], section “Multiplication by a Digit”, Lemma
2. The digits u, v at positions nb, nb−1 of the result, will together form a
number (uv) as given by (cnb−2 is the carry from earlier position):

(uv) = cnb−2 + es (2)

So,

(uv) ≥ es (3)

Also, due to Lemma 1 in article [2], any carry cannot exceed (s− 1). So,

(uv) ≤ (s− 1) + es (4)

Whenever we will need to compare bs (for any digit s) with the IDD x,
we can first ignore their last nb − 1 digits and simply compare the values
formed by their two most significant digits: (uv) and (yz). Then we can
use:

(uv) > (yz) ⇒ bs > x (5)

(uv) < (yz) ⇒ bs < x (6)

4

First Estimate

Let us say, we first estimate the desired quotient-digit d to be the following
based on the initial digits of the divisor b and IDD x:

d1 = min(b(yz)/ec, B − 1) (7)

Since d1 ≤ b(yz)/ec,

ed1 ≤ (yz) (8)

Can this estimate d1 be less than d? Let’s assume the case when d1 < d.
Since d ≤ B − 1, we must have d1 < B − 1, i.e. d1 = b(yz)/ec. But that
means,

e(d1 + 1) > (yz)

In the multiplication bs{s = d1 + 1} from the last section, the value (uv)
in the result will follow, due to (3) and above:

(uv) ≥ e(d1 + 1) > (yz)

Thus, b(d1 + 1) would exceed the IDD x (using (5)), and so d1 + 1 or
any higher digit cannot be the desired quotient-digit d. This contradicts our
assumption that d1 < d. Hence,

d ≤ d1 (9)

Intuitive Idea

Now we need to figure out, by how much d1 may exceed d. Note that in the
multiplication bs{s = d1}, the value (uv) in the result follows (due to (2)):

(uv) = cnb−2 + ed1

where carry cnb−2 cannot exceed (d1 − 1).

Due to (8), the ed1 term is less than or equal to (yz), and the contribution
by the carry term may further lead to (uv) exceeding (yz). If that happens,
we definitely know that bd1 > x (using (5)) and d1 is not the correct quotient-
digit.

5

Intuitively, this contribution by carry term (up to (d1 − 1)), which is
roughly bounded by B, can be counterbalanced by reducing d1 to d1−∆ in
the ed1 term, for some ∆. Then, ed1 reduces by e∆, and so we can be sure
to counterbalance the contribution of B by this e∆ if e∆ ≥ B.

We can see, the larger is e, the lesser ∆ is required to ensure this coun-
terbalancing. Now we will look at this idea formally.

Correction in the Estimate

Due to (9), we know that the desired d is of the form d1 − ∆, where ∆ =
0, 1, 2, What happens when we do multiplication bs{s = d1−∆} for any
∆ = 0, 1, 2, . . .? The value (uv) in the result must follow (due to (4)):

(uv) ≤ (d1 −∆− 1) + e(d1 −∆) (10)

Suppose, for any given ∆, we can find out the condition C∆ under which
this (uv) is always less than (yz). Then, b(d1 − ∆) must be less than x
(using (6)). So, we can be sure that the desired d must be one among
d1 −∆, d1 −∆ + 1, . . ., d1, whenever condition C∆ holds.

Let us try to find out such a condition. Equation (10) provides an upper-
bound on (uv) and equation (8) provides a lower-bound on (yz). If we ensure
that the (uv) upper-bound is less than (yz) lower-bound, we are guaranteed
to get (uv) < (yz). To do that:

(d1 −∆− 1) + e(d1 −∆) < ed1

⇔ (d1 −∆− 1) < e∆

⇔ e > (d1 −∆− 1)/∆

(Note that above is not possible with ∆ = 0). As (B−1) > (d1−∆−1),
so, if we have e ≥ (B − 1)/∆, the above condition is guaranteed to be met.
Thus, the desired condition C∆, which guarantees that the d is one among
d1 −∆, d1 −∆ + 1, . . ., d1 is:

C∆ : e ≥ (B − 1)/∆ (11)

For ∆ = 1, it looks difficult to achieve this condition. For ∆ = 2, it is
achieved whenever e ≥ (B − 1)/2. Since the divisor b need not have its first
digit e with e ≥ (B − 1)/2, so we will follow a process called Normalization
to achieve this, whenever e < (B − 1)/2. Note that (B − 1)/2 itself is not
an integer for even B.

6

Normalization

We will multiply both a and b by a Scaling-Factor f so that (bf)’s first
digit is at least (B − 1)/2. Then, we will perform the division process on
these modified operands af (dividend) and bf (divisor). The quotient of
this division must be same as the quotient with original operands a and b.
The remainder needs to be divided by f to give the remainder for division
with original operands.

We can find the scaling-factor f as follows. Let us try with f as a single
digit number. In the multiplication bs{s = f}, the value (uv) in the result
will follow, due to (3) and (4):

ef ≤ (uv) ≤ (f − 1) + ef

We want this value (uv) to satisfy the constraints:

(B − 1)/2 ≤ (uv) ≤ B − 1

which can be achieved with:

(B − 1)/2 ≤ ef and, (f − 1) + ef ≤ B − 1

⇔ f ≥ (B − 1)/(2e) and, f ≤ B/(e + 1)

So, we can choose f = bB/(e + 1)c.

Implementation

To summarize, if the divisor and dividend have been normalized, then the
process of computing d is the following. Find the first estimate d1 using (7).
Since we use ∆ = 2, the desired d must be one among d1 − 2, d1 − 1, d1.
Specifically, d is the maximum among these three values with the property
that (d1 − i)b ≤ x, i = 0, 1, 2.

Note that when b is a single digit divisor, IDD x is simply the two-digits
(yz), and so the first estimate d1 = b(yz)/ec must be the correct digit d
always. So, no normalization is needed in this case.

Below we implement the long-division for bigints, while using the above
approach for computing a quotient-digit. Please refer to [1] and [2] for
implementation of methods referred by these methods.

7

/* a: dividend, b: divisor, qt: quotient, rm: remainder */

int divide(bigint *a, bigint *b, bigint *qt, bigint *rm)

{

int na, nb, m;

ulong yz, d;

bigint x, t1, t2, af, bf;

uint e, f = 1;

if(BINT_ISZERO(b))

{

printf("divide: divisor is 0\n");

return -1;

}

if(BINT_LEN(a) < BINT_LEN(b))

{

BINT_INIT(qt, 0);

copy(rm, a);

return 0;

}

e = b->digits[b->msd];

if((BINT_LEN(b) > 1) && (e < B/2))

{

/* normalization */

f = B/(e + 1);

multiply_digit(a, f, &af);

multiply_digit(b, f, &bf);

a = ⁡

b = &bf;

e = b->digits[b->msd];

}

na = BINT_LEN(a);

nb = BINT_LEN(b);

/* na >= nb holds. */

/* quotient can have maximum (na-nb+1) digits */

qt->msd = WIDTH - (na-nb+1);

/* loop-invariant P: first m digits of ’a’ have been brought-down

and processed. */

m = 0;

8

while(m < na)

{

if(m == 0)

{

m = nb;

prefix(&x, a, m);

}

else

{

m++;

shift_left(&x, 1);

x.digits[WIDTH-1] = a->digits[a->msd + m-1];

}

yz = yz_from_x(&x, nb+1);

d = yz/e;

if(nb > 1)

correct_d_and_subtract(&x, b, &d);

else

{

/* we don’t need correction in d if nb=1 */

yz = yz - e*d;

/* above remainder is less than e, so must be single digit */

BINT_INIT(&x, yz);

}

qt->digits[qt->msd + m-nb] = d;

}

/* (loop-invariant P) AND (m=na) holds. */

/* Now x contains the remainder. */

rm_leading_0s(qt);

if(f > 1)

{

BINT_INIT(&t1, f);

divide(&x, &t1, rm, &t2);

}

else

copy(rm, &x);

return 0;

}

9

/* treat x as having width w, by prefixing some 0s if necessary */

static ulong yz_from_x(bigint *x, int w)

{

int iy = WIDTH-w; /* index of y */

uint y, z;

if(iy >= x->msd)

y = x->digits[iy];

else

y = 0;

if(iy+1 >= x->msd)

z = x->digits[iy+1];

else

z = 0;

return ((ulong)y)*B + z;

}

static void correct_d_and_subtract(bigint *x, bigint *b, ulong *d)

{

bigint t;

if(*d > B-1)

*d = B-1;

multiply_digit(b, *d, &t);

/* Now (t = bd) holds. */

if(compare(&t, x) == 1)

{

*d = *d - 1;

subtract(&t, b, &t);

/* Now (t = bd) holds again. */

if(compare(&t, x) == 1)

{

*d = *d - 1;

subtract(&t, b, &t);

/* Now (t = bd) holds again. */

/* We must now have t <= x. */

}

}

/* ((t = bd) AND (t <= x)) holds (implies bd <= x). */

subtract(x, &t, x);

}

�

10

References

[1] Nitin Verma. Implementing Basic Arithmetic for Large Integers: Intro-
duction. https://mathsanew.com/articles/
implementing_large_integers_introduction.pdf (2021).

[2] Nitin Verma. Implementing Basic Arithmetic for Large Integers: Multi-
plication. https://mathsanew.com/articles/
implementing_large_integers_multiplication.pdf (2021).

[3] D. A. Pope, M. L. Stein. Multiple Precision Arithmetic. C. ACM, Vol 3
(12) (1960), 652–654.

[4] D. E. Knuth. The Art of Computer Programming, Vol 2, Third Edition.
Addison-Wesley (1997).

[5] P. B. Hansen. Multiple-Length Division Revisited: A Tour of the
Minefield. Syracuse University EECS - Technical Reports, 166 (1992).
https://surface.syr.edu/eecs_techreports/166.

[6] E. V. Krishnamurthy, S. K. Nandi. On the Normalization Requirement
of Divisor in Divide-and-Correct Methods. C. ACM, Vol 10 (12) (1967),
809–813.

11

