
Implementing Basic Arithmetic for Large Integers:

Multiplication

Nitin Verma
mathsanew.com

June 18, 2021

This article is a continuation of the earlier one titled Implementing Ba-
sic Arithmetic for Large Integers: Introduction [1], which introduced how
arbitrarily large integers along with basic arithmetic operations can be im-
plemented via a program. It discussed the bigint structure for such large
integers, the operations of addition, subtraction and printing, and also in-
cluded the source code of all common internal methods.

Now we look into the multiplication operation, and discuss two algo-
rithms for the same: Schoolbook Multiplication and Karatsuba Multiplica-
tion. We will be frequently using the concepts and definitions from [1]. As
done earlier, the two operands of arithmetic operations will generally be
denoted by a = (ana−1ana−2 . . . a1a0) and b = (bnb−1bnb−2 . . . b1b0), in base
B numeral system.

Schoolbook Multiplication Algorithm

Here is an example of multiplication of decimal numerals using the school-
book method, which is also called “Long Multiplication”:

7 4 3 8 (upper operand)
9 3 6 (lower operand)

4 4 6 2 8
2 2 3 1 4

6 6 9 4 2
6 9 6 1 9 6 8

We iteratively pick each digit bi of the lower operand b, starting at the
LSD (position 0), and multiply it with the complete upper operand a to
produce one “row” Ri. Each such row Ri is left-shifted by i positions. The
result of (a · b) is addition of these left-shifted rows.

Copyright c© 2021 Nitin Verma. All rights reserved.

1

https://mathsanew.com


Multiplication by a Digit

Let us first understand the multiplication of a by any single digit s of b. It
is done iteratively by picking each digit ai, starting at the LSD (position 0)
and computing ais. Since,

a0s ≤ (B − 1)s = Bs− s + B −B = (s− 1)B1 + (B − s)B0

so the carry produced by position 0, c0, can be maximum (s − 1). For the
computation at position 1, we have:

c0 +a1s ≤ (s− 1) + (B− 1)s = Bs− 1 +B−B = (s− 1)B1 + (B− 1)B0

So, the carry produced by position 1, c1, also can be maximum (s− 1).
Thus, by repeating such argument we know that the carry ci produced by
any position i can never exceed (s− 1).

Lemma 1. In the schoolbook multiplication algorithm, when multiplying
operand a with digit s in any base B, the carry produced by any position
cannot exceed (s − 1). And since s ≤ (B − 1), a carry can never exceed
(B − 2).

This allows us to conclude that such a carry can be stored and added
like any other digit of our base B numeral system, using the uint type.

Note that the calculation at any position i is of the form (defining c−1 =
0): ci−1 + ais, which can produce values of up to 2-digit numeral in base B,
because:

ci−1 +ais ≤ (s−1)+(B−1)s = Bs−1+B−B = (s−1)B1 +(B−1)B0

[Side Note] At all positions except the MSD position of a (i.e. i = na−1),
this calculation contributes the lower digit of this 2-digit value in the result
(a · s), sending the upper digit to carry. At position i = na − 1, it will
contribute both of its digits in the result. Now we will write a lemma which
will be useful later when discussing Division operation.

Lemma 2. In the schoolbook multiplication algorithm, when multiplying
operand a = (ana−1ana−2 . . . a1a0) with digit s in any base B, the result
(a · s) has either na or na + 1 digits. In the result, the two digits at (most-
significant) positions na, na − 1 are produced by the last iteration, which
multiplies MSD of a with s. This 2-digit value is given by (cna−2 is the
earlier produced carry):

cna−2 + ana−1s

2



[End of Side Note]

Since the calculation at any position can produce values only up to 2-
digit, they should fit in the “unsigned long” type.

Implementation

Now we know how to produce each row Ri. Instead of first producing and
storing all such rows, and then adding them all (after left-shifting), we will
add each row to a common result r as and when it is produced. Thus we
will avoid the need to store these rows for later processing.

Below method multiply digit() implements multiplication of a bigint by a
single digit, and multiply() implements multiplication of two bigints. Please
refer to [1] for implementation of methods referred by these methods.

Note that each row Ri has up to na + 1 digits, and after left-shifting it
by i positions, it effectively has na + i + 1 digits. When we add row Ri to
the common result r, we will be performing an addition involving na + i+ 1
digit-positions (the current r must not be having more digits than this); i.e.
na + i + 1 iterations in the addition method. Starting with r as R0, the
addition of remaining nb − 1 rows will require total such iterations as:

(na + 2) + (na + 3) + . . . + (na + nb)

So when na < nb, we can reduce these iterations by swapping a and b.
That is, for efficiency, the operand with more number of digits will always
be chosen as the upper operand.

3



/* input struct r can also be same as struct a */

int multiply_digit(bigint *a, uint s, bigint *r)

{

int j;

uint carry = 0;

ulong d;

if(s == 0)

{

BINT_INIT(r, 0);

return 0;

}

/* digits[] index j corresponds to position WIDTH-1-j in the

positional-numeral representation */

for(j = WIDTH-1; j >= a->msd; j--)

{

d = ((ulong)a->digits[j])*s + carry;

carry = d / B;

r->digits[j] = d % B;

}

if(carry)

{

if(j < 0)

{

printf("multiply_digit: overflow\n");

return -1;

}

else

{

r->digits[j] = carry;

r->msd = j;

}

}

else

r->msd = j + 1;

return 0;

}

4



/* input r must be a separate struct than a or b */

int multiply(bigint *a, bigint *b, bigint *r)

{

int j;

bigint R; /* row */

if(BINT_LEN(a) < BINT_LEN(b))

SWAP(a, b);

/* digits[] index j corresponds to position WIDTH-1-j in the

positional-numeral representation */

multiply_digit(a, b->digits[WIDTH-1], r);

for(j = WIDTH-2; j >= b->msd; j--)

{

multiply_digit(a, b->digits[j], &R);

shift_left(&R, WIDTH-1-j);

add(r, &R, r);

}

return 0;

}

Karatsuba Multiplication Algorithm

Now we will discuss one more algorithm for multiplication. We first consider
the case when the two operands have same number of digits. Say, the
two operands are a = (an−1an−2 . . . a1a0) and b = (bn−1bn−2 . . . b1b0), each
having n digits in base B, where n is even. We can break each of these
numbers into two components as below, where k = n/2:

a = (an−1an−2 . . . ak)Bk + (ak−1ak−2 . . . a0)

b = (bn−1bn−2 . . . bk)Bk + (bk−1bk−2 . . . b0)

We can denote these components as integers La, Ra, Lb, Rb (each having
k-digits) and write:

a = LaB
k + Ra

b = LbB
k + Rb

The L and R symbols signify “Left” and “Right” half in the digit se-
quence. Now, the product of a and b can be expressed as:

ab = (LaB
k + Ra)(LbB

k + Rb)

= (LaLb)B
2k + (LaRb + RaLb)B

k + (RaRb)B
0 (1)

5



So, to obtain ab, one way is to first compute each of (LaLb), (LaRb),
(RaLb) and (RaRb) and use them in above expression. Each of these 4
terms require multiplication of two k-digit numbers. Note that multiplica-
tion by B2k and Bk can be simply done by left-shifting by 2k and k positions
respectively. The problem of multiplying a and b has been reduced to the
subproblems of these 4 multiplications, followed by left-shifts and additions.
This is in fact a Divide and Conquer approach.

Karatsuba Multiplication Algorithm (also described in [2] by its inventor
A. A. Karatsuba) is based on the observation that the term (LaRb + RaLb)
can be rewritten to give us something useful:

LaRb + RaLb = (La + Ra)(Lb + Rb)− LaLb −RaRb (2)

Since LaLb and RaRb anyway need to be computed in (1), so just by doing
one more multiplication (La + Ra)(Lb + Rb), we can avoid doing the two
multiplications LaRb and RaLb.

Since adding two k-digit numbers may produce a (k + 1)-digit number,
so the multiplication (La +Ra)(Lb +Rb) may involve (k+1)-digit operands.
We will be referring to a multiplication of operands having x and y digits
as “a (x, y)-digits multiplication”.

Thus we are now required to perform overall two (k, k)-digits (LaLb,
RaRb) and one (k + 1, k + 1)-digits multiplications, instead of four (k, k)-
digits multiplications appearing in (1). Though, for this saving some extra
work is required, like additions (La + Ra) and (Lb + Rb), and subtractions
of LaLb and RaRb as seen in (2).

This same technique can be recursively applied while solving the three
multiplication subproblems. If number of digits (n) is not even for any
subproblem, we can choose k = dn/2e.

Let us denote by T (n) the time-complexity of this algorithm for (n, n)-
digits multiplication, where n is even. For this complexity analysis, we will
treat the (k+ 1, k+ 1)-digits multiplication as having complexity T (k) + c1k
(for some constant c1), which is achievable. The extra work required for
additions and subtractions in (2) can be written as c2n for some constant
c2. So the recurrence relation for T (n) is, for some constant c:

T (n) = 2T (k) + (T (k) + c1k) + c2n = 3T (n/2) + cn

If we assume n to be a power of 2, T (n) will come out to be O(nlog2 3).
It is easy to see that the schoolbook multiplication algorithm has time-
complexity O(n2) for (n, n)-digits multiplication.

6



Operands with Unequal Lengths

In above, we have assumed a and b to be having the same number of digits.
Now, let us say, a has na digits and b has nb digits, na ≥ nb. For their
multiplication, how can we benefit from the above method?

Due to the Division Theorem, there must exist integers q, r with q ≥ 1,
0 ≤ r ≤ nb − 1, such that:

na = qnb + r

Starting from the least-significant-digit (LSD) of a, we can divide it into
q chunks of nb digits each, and one last chunk of r digits which begins at the
most-significant-digit (MSD) of a. We can write a in terms of these chunks
(components) as:

a = (Cq)B
qnb + . . . + (C2)B

2nb + (C1)B
nb + (C0)B

0

where C0, C1, . . . , Cq−1 have nb digits each and Cq has r digits. Note that,
because of some 0 digits within a, these chunks may have redundant 0s at
the beginning positions (starting at their MSD).

The product ab will be computed as:

ab = (Cqb)B
qnb + . . . + (C2b)B

2nb + (C1b)B
nb + (C0b)B

0

That is, we will multiply each component with b, left-shift the results
as required, and add them all. Note that, there are q multiplication sub-
problems of (nb, nb)-digits each, and 1 subproblem of (r, nb)-digits. These
subproblems can be recursively solved in the same manner; the earlier de-
scribed Karatsuba method will be used whenever the two operands have
equal number of digits.

Implementation

Below method shows an implementation of this algorithm. Please refer to
[1] for implementation of methods referred by it.

For operands with small number of digits, the savings provided by this
algorithm may not exceed the extra work required; making it less efficient.
So, in below method we delegate to the schoolbook method when number
of digits of smaller operand is less than a threshold. The optimal value of
this threshold depends upon factors including the computer system.

7



Also note that, within every call of method multiply k(), we need mem-
ory to store a few intermediate numbers, as done using local bigint variables
La, Ra, Lb, Rb and t1. With our current bigint definition, these 5 bigints
will occupy memory of (5 ·WIDTH ) integers in each method call. But if the
bigint struct allocates memory only for required digits (instead of the fixed
WIDTH ), we can save some memory. In fact, some intermediate numbers
require almost half the number of digits than the two operands.

/* input r must be a separate struct than a or b */

int multiply_k(bigint *a, bigint *b, bigint *r)

{

#define MULTIPLY_K_THRSH 15

int na, nb, k;

bigint La, Ra, Lb, Rb, t1;

/* internal swap to ensure: na >= nb */

if(BINT_LEN(a) < BINT_LEN(b))

SWAP(a, b);

na = BINT_LEN(a);

nb = BINT_LEN(b);

if(nb <= MULTIPLY_K_THRSH)

return multiply(a, b, r);

if(na != nb)

{

int cstart, cend = WIDTH-1; /* chunk-start, chunk-end */

BINT_INIT(r, 0);

/* invariant: digits after index "cend" have been processed */

while(cend >= a->msd)

{

cstart = cend-nb+1;

if(cstart < a->msd)

cstart = a->msd;

portion(&La, a, cstart, (cend-cstart+1));

multiply_k(&La, b, &t1);

shift_left(&t1, WIDTH-1-cend);

add(r, &t1, r);

cend = cstart-1;

}

return 0;

}

8



/* na = nb */

k = (na + 1)/2;

/* L: La*Lb, R: Ra*Rb, X: (La + Ra)*(Lb + Rb) */

/* compute L in variable t1 */

prefix(&La, a, na-k);

prefix(&Lb, b, na-k);

multiply_k(&La, &Lb, &t1);

/* compute R in variable r */

suffix(&Ra, a, k);

suffix(&Rb, b, k);

multiply_k(&Ra, &Rb, r);

/* compute X in variable Ra */

add(&La, &Ra, &La);

add(&Lb, &Rb, &Lb);

/* Ra and Rb free now, can be reused */

multiply_k(&La, &Lb, &Ra);

/* compute X-L-R in variable Ra */

subtract(&Ra, &t1, &Ra);

subtract(&Ra, r, &Ra);

/* compute L (<<k*2) + (X-L-R) (<<k) + R */

shift_left(&t1, k*2);

shift_left(&Ra, k);

add(r, &Ra, r);

add(r, &t1, r);

return 0;

}

�

References

[1] Nitin Verma. Implementing Basic Arithmetic for Large Integers: Intro-
duction. https://mathsanew.com/articles/
implementing_large_integers_introduction.pdf (2021).

[2] A. A. Karatsuba. The Complexity of Computations. Proc Steklov Insti-
tute of Mathematics, Vol 211 (1995), 169–183. http://www.ccas.ru/
personal/karatsuba/divcen.pdf.

9


