Multiples of an Integer Modulo Another Integer

Nitin Verma
mathsanew.com

December 5, 2020

When we repeatedly add an integer a and keep taking mod of the results with another integer n (i.e. perform $(a+a+\ldots) \bmod n$), we can find some interesting relations. In this article, we sequentially derive some of these relations.

Let us first get introduced to some very basic concepts of Modular Arithmetic.

Some Basics of Modular Arithmetic

We will use \mathbb{Z} to represent the set of all integers $\{\ldots,-2,-1,0,1,2, \ldots\}$, and \mathbb{Z}_{n} to represent the set of integers $\{0,1,2, \ldots, n-1\}$. Below is a very fundamental theorem about division of integers.

Theorem 1 (Division Theorem). For any integers a, n with $n>0$, there exist unique integers q and r such that $0 \leq r<n$ and $a=q n+r$.
q and r are called the Quotient and Remainder of this division respectively. r is always non-negative and will be represented as $a \bmod n$. Note that, for all integers $a,(a \bmod n) \in \mathbb{Z}_{n}$.

For any a, since $r \geq 0$, we can write: $a \geq q n$. So, if $a<0$, then $q<0$. If $q<0$, then $q n \leq-n$. And since $r<n$, so if $q<0$, then $a=q n+r<-n+n=0$.

Thus, in brief, we can write $q<0$ iff $a<0$.

[^0]Note that, for any $a, a \bmod n$ and $(-a) \bmod n$ need not be same. For example, $3 \bmod 10=3$, but $(-3) \bmod 10=7$.

For any integers a and b, if $a \bmod n=b \bmod n$, we say " a is equivalent to b modulo n ", and denote this fact as: $a \equiv b(\bmod n)$. This happens iff n divides $(a-b)$. Notice this use of the term "mod n ", which is also used as a binary operator like " $a \bmod n$ ".

The case when $a \bmod n \neq b \bmod n$, is denoted by $a \not \equiv b(\bmod n)$.
It is easy to see that for all integers b such that $b=a+n k$ for some integer $k, a \equiv b(\bmod n)$.

Here are some other useful facts about the mod operation. a, b, n, i are any integers, $n>0, i \geq 0$. Please convince yourself of the reasoning behind these. Their basis is that any integer a can be expressed as a multiple of n, plus $a \bmod n$ (Division Theorem).
(1) $\quad(a+b) \bmod n=(a \bmod n+b \bmod n) \bmod n$
(2) $\quad(a-b) \bmod n=(a \bmod n-b \bmod n) \bmod n$
$(a b) \bmod n=(a(b \bmod n)) \bmod n$
$=((a \bmod n) b) \bmod n$
$=((a \bmod n)(b \bmod n)) \bmod n$
$\left(a^{i}\right) \bmod n=((a \bmod n)(a \bmod n) \ldots\{i$ times $\}) \bmod n$
$=(a \bmod n)^{i} \bmod n$ $a \bmod n=b \bmod n$
$\Leftrightarrow \quad(a-b) \bmod n=(b-a) \bmod n=0$
(6) $\quad(a \pm b n) \bmod n=a \bmod n$

Multiples of a Modulo n

Suppose a, n are any integers with $n>0$. For $i=0,1,2, \ldots, n-1$, i.e. $i \in \mathbb{Z}_{n}$, what are the values obtained by $(a i) \bmod n$? Below we will prove a theorem which helps us to find them.

If we know such values for $i \in \mathbb{Z}_{n}$, we can trivially figure out $(a j) \bmod n$ for any integer j, because $(a j) \bmod n=(a(j \bmod n)) \bmod n$, and $(j \bmod$ $n) \in \mathbb{Z}_{n}$.

Theorem 2. For any integers a, n with $n>0$, $a \bmod n \neq 0$, and $g=$ $\operatorname{gcd}(a, n)$, the set of integers $A=\left\{(a i) \bmod n: i \in \mathbb{Z}_{n}\right\}$ is same as set $G=\{0, g, 2 g, \ldots,((n / g)-1) g\}$.

Proof. We will represent the value $(a k) \bmod n$, for any integer k (not necessarily in \mathbb{Z}_{n}), as v_{k}.

For any integer a, say $a^{\prime}=a \bmod n$, and so $a^{\prime} \in \mathbb{Z}_{n}$. Thus, any value $v_{i}=(a i) \bmod n=((a \bmod n) i) \bmod n=\left(a^{\prime} i\right) \bmod n$. That means, the set of values obtained for a and a^{\prime} are exactly the same.

Thus, for the purpose of our proof we can assume $a \in \mathbb{Z}_{n}$, and the theorem will stand proved for any integer a.

Say, t is the least positive integer such that $v_{t}=0$. That is,

$$
\text { (at) } \bmod n=0 \quad \Leftrightarrow \quad n \mid a t \quad \Leftrightarrow \quad a t \text { is a multiple of } n
$$

Since $a \in \mathbb{Z}_{n}$ and $a \bmod n \neq 0$, so $a>0$. Also, $t>0$, implying $a t>0$. Say $m>0$ is an integer such that $n m=a t$. But this is a positive commonmultiple of a and n. Since we are looking for the least such t, so:

$$
\begin{array}{rlrl}
& & a t & =\operatorname{lcm}(a, n) \\
\Leftrightarrow & a t & =\operatorname{an} / \operatorname{gcd}(a, n)=a n / g \\
\Leftrightarrow & t & =n / g
\end{array}
$$

Note, g being the gcd of a and $n, n / g$ is an integer. The desired value t is n / g. If $g>1, t=n / g$ is in \mathbb{Z}_{n}.

But if $g=1, t=n$, i.e. t is not in \mathbb{Z}_{n}. That means, $($ ai $) \bmod n=0$ is attained only for $i=0$ in \mathbb{Z}_{n}.

Now, consider all $i<t$, i.e. $i=0,1,2, \ldots, t-1$. Say, for some i_{1} and i_{2} among these, with $i_{1}<i_{2}$, we obtain same value of v_{i}. Then,

$$
\left(a i_{1}\right) \bmod n=\left(a i_{2}\right) \bmod n \quad \Leftrightarrow \quad\left(a\left(i_{2}-i_{1}\right)\right) \bmod n=0
$$

Say $t^{\prime}=i_{2}-i_{1}$. So, $\left(a t^{\prime}\right) \bmod n=0$. But $0<\left(i_{2}-i_{1}\right)<t$. So, $0<t^{\prime}<t$, which is impossible since t is the least positive integer with $(a t) \bmod n=0$.

Hence, for all $i<t$ in \mathbb{Z}_{n}, values v_{i} are distinct. Note that when $g=1$, in which case $t=n$, all v_{i} for $i=0,1,2, \ldots, n-1$ are distinct.

Now, for any positive integer j, consider $v_{t+j}: v_{t+j}=(a(t+j)) \bmod n=$ $(a t+a j) \bmod n=((a t) \bmod n+a j) \bmod n=(a j) \bmod n=v_{j}$.

That is, $v_{t+1}=v_{1}, v_{t+2}=v_{2}, \ldots, v_{t+t}=v_{t}=0=v_{0}$. The cycle of v_{k} values: $\left(v_{0}=0\right), v_{1}, v_{2}, \ldots, v_{t-1}$, consisting of t distinct elements, keeps repeating for all integers $k=t$ onward. That means, for $i \in \mathbb{Z}_{n}$, values v_{i} consist of this $t=n / g$ sized cycle repeated g times.

We can now conclude that set A contains $t=n / g$ elements. What are these elements?

Consider any element $(a i) \bmod n$. (ai) $\bmod n$ is nothing but $a i-n q$ for some integer q (Division Theorem). Since $g \mid a$ and $g \mid n$, so: $g \mid$ $(a i-n q) \Leftrightarrow g \mid((a i) \bmod n)$.

So, each element v_{i} of set A is a multiple of g. Also, $0 \leq v_{i} \leq n-1$ for any element v_{i} of A (they are modulo n), and there are n / g such elements. In the sequence of n consecutive integers $0,1,2, \ldots, n-1$ (where all v_{i} belong), there are total n / g multiples of $g: 0, g, 2 g, \ldots,((n / g)-1) g$.

So, the total n / g distinct elements of A, each being a multiple of g, can only be: $G=\{0, g, 2 g, \ldots,((n / g)-1) g\}$.

Corollary 3. For any integers a, b, n with $n>0, a \bmod n \neq 0$, and $g=$ $\operatorname{gcd}(a, n)$, the set of integers $A=\left\{(a i+b) \bmod n: i \in \mathbb{Z}_{n}\right\}$ consists of values $b, b+g, b+2 g, \ldots, b+((n / g)-1) g$ after taking their mod n.

Proof. Consider the set $A^{\prime}=\left\{(a i) \bmod n: i \in \mathbb{Z}_{n}\right\}$ which is same as $G=$ $\{0, g, 2 g, \ldots,((n / g)-1) g\}$, due to Theorem 2 .

For any integer $i \in \mathbb{Z}_{n}$, an element in set $A,(a i+b) \bmod n$, will equal $((a i) \bmod n+b) \bmod n$. But $(a i) \bmod n$ is an element in set A^{\prime}. So, (considering every $i \in \mathbb{Z}_{n}$) all the elements of A can simply be obtained by taking all elements of A^{\prime}, adding b to each and taking $\bmod n$. But all elements of A^{\prime} are the set G. So, set A can be obtained from set G, such that each element k in G is modified to $(k+b) \bmod n$.

Now, for any two distinct integers j and k in \mathbb{Z}_{n}, we must have $(j+$ b) $\bmod n \neq(k+b) \bmod n$. So, modifying the elements of G (which is a
subset of \mathbb{Z}_{n}) as above does not make any two of them equal. That is, A consists of same number of elements as are in G, which is n / g.

In other words, A consists of: $b, b+g, b+2 g, \ldots, b+((n / g)-1) g$, all taken $\bmod n$.

Corollary 4. For any integers a, b, n with $n>0$, a and n coprime (i.e. $g=\operatorname{gcd}(a, n)=1)$, the set of integers $A=\left\{(a i+b) \bmod n: i \in \mathbb{Z}_{n}\right\}$ is same as $\mathbb{Z}_{n}=\{0,1,2, \ldots, n-1\}$.

Proof. From Corollary 3, and $g=1$, set A consists of below values after taking $\bmod n: b, b+1, b+2, \ldots, b+(n-1)$.

But any set of n consecutive integers, when every element is taken mod n, will give the set of integers: $\{0,1,2, \ldots, n-1\}$. So, set A will also be same as $\{0,1,2, \ldots, n-1\}$.

Corollary 5. If n is prime, we have $g=\operatorname{gcd}(a, n)=1$ for all integers a. So Corollary 4 applies for all integers a when n is prime.

We have now seen some characteristics of multiples of an integer a modulo another integer n. There is another side of this: if we are given such a multiple $(a x) \bmod n$, can we find out x ? More generally, if we are given an integer $k \in \mathbb{Z}_{n}$, is there any integer x such that $(a x) \bmod n=k$. We will now try to understand existence of such x.

Modular Linear Equation

For given integers a, b, n with $n>0, a \bmod n \neq 0$ and x unknown integer in \mathbb{Z}_{n}, the modular linear equation looks like:

$$
a x \equiv b \quad(\bmod n)
$$

We need to find x, the solution of this equation where $x \in \mathbb{Z}_{n}$.
This equation can also be written as: $(a x-b) \bmod n=0$. So finding x simply means that we need to find the element in set $A=\{(a i-b) \bmod n$: $\left.i \in \mathbb{Z}_{n}\right\}$ which is 0 and then the corresponding i is the desired solution x. Using Corollary 3 with its b as $(-b)$, the set A consists of following values after taking their $\bmod n:-b,-b+g,-b+2 g, \ldots,-b+((n / g)-1) g$.

Let us assume that there exists some integer $m \in\{0,1,2, \ldots,(n / g)-1\}$, such that a value in set $A,(-b+m g) \bmod n$, is 0 . Then,
\{Such integer m exists $\}$

$$
\begin{array}{rlrl}
\Leftrightarrow & (-b+m g) \bmod n & =0 \\
\Leftrightarrow & (-b+m g) & =k n & \text { \{for some integer } k\} \\
\Leftrightarrow & b / g & =-k n / g+m
\end{array}
$$

Since $g \mid n$, if integer m exists, then b / g must be an integer, i.e. $g \mid b$.
On the other hand, if $g \mid b(b / g$ is an integer), then applying Division Theorem on integer b / g divided by integer n / g, we know that there exist integers k and m such that $0 \leq m<n / g$. That will be our desired m.

As m was the remainder in above division, so $m=(b / g) \bmod (n / g)$.
Thus we have proved this in both directions: $g \mid b$ iff there exists $m \in$ $\{0,1,2, \ldots,(n / g)-1\}$ such that a value in set $A,(-b+m g) \bmod n$, is 0 .

To conclude, the equation has a solution iff $g \mid b$.
In proof of Theorem 2, we saw that the values $v_{i}=(a i) \bmod n$ are distinct for $i=0,1,2, \ldots, t-1(t=n / g)$, and then cycle for $i=t$ onward as $v_{t+j}=v_{t}$. Similarly, values $(a i-b) \bmod n$ will also repeat in cycles of $t=n / g$ distinct values.

So, if solutions of the equation exist, one solution x_{0} must be among $\{0,1,2, \ldots, t-1\}$, such that $\left(a x_{0}-b\right) \bmod n=0$.

If solution x_{0} exists, then for every cycle of t integers i in \mathbb{Z}_{n}, a solution must exist. There are g cycles, each of length t among i in \mathbb{Z}_{n}. So, there will be g solutions: $x=x_{0}+t j, j=0,1,2, \ldots,(n / t)-1$.

We can write above findings in a theorem as below.

Theorem 6. For given integers a, b, n with $n>0, a \bmod n \neq 0$ and $g=$ $g c d(a, n)$, the modular linear equation: $a x \equiv b(\bmod n)$ is solvable iff $g \mid b$. If solvable, there are total g solutions.

Corollary 7. For given integers a, b, n with $n>0$, if a and n are coprime, i.e. $g=\operatorname{gcd}(a, n)=1$, then the equation $a x \equiv b(\bmod n)$ has exactly one solution.

Proof. Apply Theorem 6 with $g=1$. Since for all integers $b, 1 \mid b$, so the equation is solvable and has $g=1$ solution.

Corollary 8. Equation $a x \equiv 1(\bmod n)$ is solvable iff $g=\operatorname{gcd}(a, n)=1$. If solvable, it has exactly one solution.

Proof. Apply Theorem 6 with $b=1$. Equation is solvable iff $g \mid 1$. That is possible only if $g=1$. Such a solution is referred as the "Multiplicative Inverse of a modulo $n "$, and denoted as $a^{-1} \bmod n$.

Corollary 9. If n is prime, $a x \equiv b(\bmod n)$ has exactly one solution, for all integers a and b.

Proof. When n is prime, $g=\operatorname{gcd}(a, n)=1$, and so Corollary 7 applies.

[^0]: Copyright © 2020 Nitin Verma. All rights reserved.

