Multiples of an Integer Modulo Another Integer

Nitin Verma

mathsanew.com

December 5, 2020

When we repeatedly add an integer a and keep taking *mod* of the results with another integer n (i.e. perform $(a + a + ...) \mod n$), we can find some interesting relations. In this article, we sequentially derive some of these relations.

Let us first get introduced to some very basic concepts of *Modular Arithmetic*.

Some Basics of Modular Arithmetic

We will use \mathbb{Z} to represent the set of all integers $\{\ldots, -2, -1, 0, 1, 2, \ldots\}$, and \mathbb{Z}_n to represent the set of integers $\{0, 1, 2, \ldots, n-1\}$. Below is a very fundamental theorem about division of integers.

Theorem 1 (Division Theorem). For any integers a, n with n > 0, there exist unique integers q and r such that $0 \le r < n$ and a = qn + r.

q and r are called the *Quotient* and *Remainder* of this division respectively. r is always non-negative and will be represented as $a \mod n$. Note that, for all integers a, $(a \mod n) \in \mathbb{Z}_n$.

For any a, since $r \ge 0$, we can write: $a \ge qn$. So, if a < 0, then q < 0. If q < 0, then $qn \le -n$. And since r < n, so if q < 0, then a = qn + r < -n + n = 0.

Thus, in brief, we can write q < 0 iff a < 0.

Copyright © 2020 Nitin Verma. All rights reserved.

Note that, for any a, $a \mod n$ and $(-a) \mod n$ need not be same. For example, $3 \mod 10 = 3$, but $(-3) \mod 10 = 7$.

For any integers a and b, if $a \mod n = b \mod n$, we say "a is equivalent to $b \mod n$ ", and denote this fact as: $a \equiv b \pmod{n}$. This happens *iff* n divides (a - b). Notice this use of the term "mod n", which is also used as a binary operator like " $a \mod n$ ".

The case when $a \mod n \neq b \mod n$, is denoted by $a \not\equiv b \pmod{n}$.

It is easy to see that for all integers b such that b = a + nk for some integer k, $a \equiv b \pmod{n}$.

Here are some other useful facts about the mod operation. a, b, n, i are any integers, $n > 0, i \ge 0$. Please convince yourself of the reasoning behind these. Their basis is that any integer a can be expressed as a multiple of n, plus $a \mod n$ (Division Theorem).

(1) $(a+b) \mod n = (a \mod n + b \mod n) \mod n$

(2)
$$(a-b) \mod n = (a \mod n - b \mod n) \mod n$$

(3)
$$(ab) \mod n = (a(b \mod n)) \mod n$$

 $= ((a \mod n)b) \mod n$

 $= ((a \bmod n)(b \bmod n)) \bmod n$

(4) $(a^i) \mod n = ((a \mod n)(a \mod n) \dots \{i \text{ times}\}) \mod n$

- $= (a \mod n)^i \mod n$
- $(5) a \bmod n = b \bmod n$

 $\Leftrightarrow \quad (a-b) \bmod n = (b-a) \bmod n = 0$

(6) $(a \pm bn) \mod n = a \mod n$

Multiples of a Modulo n

Suppose a, n are any integers with n > 0. For i = 0, 1, 2, ..., n - 1, i.e. $i \in \mathbb{Z}_n$, what are the values obtained by $(ai) \mod n$? Below we will prove a theorem which helps us to find them.

If we know such values for $i \in \mathbb{Z}_n$, we can trivially figure out $(aj) \mod n$ for any integer j, because $(aj) \mod n = (a(j \mod n)) \mod n$, and $(j \mod n) \in \mathbb{Z}_n$. **Theorem 2.** For any integers a, n with n > 0, $a \mod n \neq 0$, and g = gcd(a, n), the set of integers $A = \{(ai) \mod n : i \in \mathbb{Z}_n\}$ is same as set $G = \{0, g, 2g, \ldots, ((n/g) - 1)g\}.$

Proof. We will represent the value $(ak) \mod n$, for any integer k (not necessarily in \mathbb{Z}_n), as v_k .

For any integer a, say $a' = a \mod n$, and so $a' \in \mathbb{Z}_n$. Thus, any value $v_i = (ai) \mod n = ((a \mod n)i) \mod n = (a'i) \mod n$. That means, the set of values obtained for a and a' are exactly the same.

Thus, for the purpose of our proof we can assume $a \in \mathbb{Z}_n$, and the theorem will stand proved for any integer a.

Say, t is the least positive integer such that $v_t = 0$. That is,

 $(at) \mod n = 0 \quad \Leftrightarrow \quad n \mid at \quad \Leftrightarrow \quad at \text{ is a multiple of } n$

Since $a \in \mathbb{Z}_n$ and $a \mod n \neq 0$, so a > 0. Also, t > 0, implying at > 0. Say m > 0 is an integer such that nm = at. But this is a positive commonmultiple of a and n. Since we are looking for the least such t, so:

 $\begin{array}{l} at = lcm(a,n) \\ \Leftrightarrow \quad at = an/gcd(a,n) = an/g \\ \Leftrightarrow \quad t = n/g \end{array}$

Note, g being the gcd of a and n, n/g is an integer. The desired value t is n/g. If g > 1, t = n/g is in \mathbb{Z}_n .

But if g = 1, t = n, i.e. t is not in \mathbb{Z}_n . That means, $(ai) \mod n = 0$ is attained only for i = 0 in \mathbb{Z}_n .

Now, consider all i < t, i.e. i = 0, 1, 2, ..., t - 1. Say, for some i_1 and i_2 among these, with $i_1 < i_2$, we obtain same value of v_i . Then,

 $(ai_1) \mod n = (ai_2) \mod n \quad \Leftrightarrow \quad (a(i_2 - i_1)) \mod n = 0$

Say $t' = i_2 - i_1$. So, $(at') \mod n = 0$. But $0 < (i_2 - i_1) < t$. So, 0 < t' < t, which is impossible since t is the least positive integer with $(at) \mod n = 0$.

Hence, for all i < t in \mathbb{Z}_n , values v_i are distinct. Note that when g = 1, in which case t = n, all v_i for i = 0, 1, 2, ..., n - 1 are distinct.

Now, for any positive integer j, consider v_{t+j} : $v_{t+j} = (a(t+j)) \mod n = (at+aj) \mod n = ((at) \mod n + aj) \mod n = (aj) \mod n = v_j$.

That is, $v_{t+1} = v_1, v_{t+2} = v_2, \ldots, v_{t+t} = v_t = 0 = v_0$. The cycle of v_k values: $(v_0 = 0), v_1, v_2, \ldots, v_{t-1}$, consisting of t distinct elements, keeps repeating for all integers k = t onward. That means, for $i \in \mathbb{Z}_n$, values v_i consist of this t = n/g sized cycle repeated g times.

We can now conclude that set A contains t = n/g elements. What are these elements?

Consider any element $(ai) \mod n$. $(ai) \mod n$ is nothing but ai - nq for some integer q (Division Theorem). Since $g \mid a$ and $g \mid n$, so: $g \mid (ai - nq) \iff g \mid ((ai) \mod n)$.

So, each element v_i of set A is a multiple of g. Also, $0 \le v_i \le n-1$ for any element v_i of A (they are modulo n), and there are n/g such elements. In the sequence of n consecutive integers $0, 1, 2, \ldots, n-1$ (where all v_i belong), there are total n/g multiples of $g: 0, g, 2g, \ldots, ((n/g) - 1)g$.

So, the total n/g distinct elements of A, each being a multiple of g, can only be: $G = \{0, g, 2g, \dots, ((n/g) - 1)g\}.$

Corollary 3. For any integers a, b, n with n > 0, $a \mod n \neq 0$, and g = gcd(a, n), the set of integers $A = \{(ai+b) \mod n : i \in \mathbb{Z}_n\}$ consists of values $b, b+g, b+2g, \ldots, b+((n/g)-1)g$ after taking their mod n.

Proof. Consider the set $A' = \{(ai) \mod n : i \in \mathbb{Z}_n\}$ which is same as $G = \{0, g, 2g, \ldots, ((n/g) - 1)g\}$, due to Theorem 2.

For any integer $i \in \mathbb{Z}_n$, an element in set A, $(ai + b) \mod n$, will equal $((ai) \mod n+b) \mod n$. But $(ai) \mod n$ is an element in set A'. So, (considering every $i \in \mathbb{Z}_n$) all the elements of A can simply be obtained by taking all elements of A', adding b to each and taking mod n. But all elements of A' are the set G. So, set A can be obtained from set G, such that each element k in G is modified to $(k + b) \mod n$.

Now, for any two distinct integers j and k in \mathbb{Z}_n , we must have $(j + b) \mod n \neq (k + b) \mod n$. So, modifying the elements of G (which is a

subset of \mathbb{Z}_n) as above does not make any two of them equal. That is, A consists of same number of elements as are in G, which is n/g.

In other words, A consists of: $b, b + g, b + 2g, \ldots, b + ((n/g) - 1)g$, all taken mod n.

Corollary 4. For any integers a, b, n with n > 0, a and n coprime (i.e. g = gcd(a, n) = 1), the set of integers $A = \{(ai+b) \mod n : i \in \mathbb{Z}_n\}$ is same as $\mathbb{Z}_n = \{0, 1, 2, ..., n-1\}$.

Proof. From Corollary 3, and g = 1, set A consists of below values after taking mod $n: b, b+1, b+2, \ldots, b+(n-1)$.

But any set of *n* consecutive integers, when every element is taken mod *n*, will give the set of integers: $\{0, 1, 2, ..., n - 1\}$. So, set *A* will also be same as $\{0, 1, 2, ..., n - 1\}$.

Corollary 5. If n is prime, we have g = gcd(a, n) = 1 for all integers a. So Corollary 4 applies for all integers a when n is prime.

We have now seen some characteristics of multiples of an integer a modulo another integer n. There is another side of this: if we are given such a multiple $(ax) \mod n$, can we find out x? More generally, if we are given an integer $k \in \mathbb{Z}_n$, is there any integer x such that $(ax) \mod n = k$. We will now try to understand existence of such x.

Modular Linear Equation

For given integers a, b, n with n > 0, $a \mod n \neq 0$ and x unknown integer in \mathbb{Z}_n , the modular linear equation looks like:

 $ax \equiv b \pmod{n}$

We need to find x, the solution of this equation where $x \in \mathbb{Z}_n$.

This equation can also be written as: $(ax - b) \mod n = 0$. So finding x simply means that we need to find the element in set $A = \{(ai - b) \mod n : i \in \mathbb{Z}_n\}$ which is 0 and then the corresponding i is the desired solution x. Using Corollary 3 with its b as (-b), the set A consists of following values after taking their mod n: $-b, -b + g, -b + 2g, \ldots, -b + ((n/g) - 1)g$.

Let us assume that there exists some integer $m \in \{0, 1, 2, ..., (n/g) - 1\}$, such that a value in set A, $(-b + mg) \mod n$, is 0. Then,

 $\{ \text{Such integer } m \text{ exists} \}$ $\Leftrightarrow \qquad (-b + mg) \mod n = 0$ $\Leftrightarrow \qquad (-b + mg) = kn \quad \{ \text{for some integer } k \}$ $\Leftrightarrow \qquad b/g = -kn/g + m$

Since $g \mid n$, if integer m exists, then b/g must be an integer, i.e. $g \mid b$.

On the other hand, if $g \mid b$ (b/g is an integer), then applying Division Theorem on integer b/g divided by integer n/g, we know that there exist integers k and m such that $0 \leq m < n/g$. That will be our desired m.

As m was the remainder in above division, so $m = (b/g) \mod (n/g)$.

Thus we have proved this in both directions: $g \mid b \text{ iff}$ there exists $m \in \{0, 1, 2, \dots, (n/g) - 1\}$ such that a value in set A, $(-b + mg) \mod n$, is 0.

To conclude, the equation has a solution iff $g \mid b$.

In proof of Theorem 2, we saw that the values $v_i = (ai) \mod n$ are distinct for $i = 0, 1, 2, \ldots, t - 1$ (t = n/g), and then cycle for i = t onward as $v_{t+j} = v_t$. Similarly, values $(ai - b) \mod n$ will also repeat in cycles of t = n/g distinct values.

So, if solutions of the equation exist, one solution x_0 must be among $\{0, 1, 2, \ldots, t-1\}$, such that $(ax_0 - b) \mod n = 0$.

If solution x_0 exists, then for every cycle of t integers i in \mathbb{Z}_n , a solution must exist. There are g cycles, each of length t among i in \mathbb{Z}_n . So, there will be g solutions: $x = x_0 + tj$, $j = 0, 1, 2, \ldots, (n/t) - 1$.

We can write above findings in a theorem as below.

Theorem 6. For given integers a, b, n with n > 0, $a \mod n \neq 0$ and g = gcd(a, n), the modular linear equation: $ax \equiv b \pmod{n}$ is solvable iff $g \mid b$. If solvable, there are total g solutions.

Corollary 7. For given integers a, b, n with n > 0, if a and n are coprime, i.e. g = gcd(a, n) = 1, then the equation $ax \equiv b \pmod{n}$ has exactly one solution.

Proof. Apply Theorem 6 with g = 1. Since for all integers $b, 1 \mid b$, so the equation is solvable and has g = 1 solution.

Corollary 8. Equation $ax \equiv 1 \pmod{n}$ is solvable iff g = gcd(a, n) = 1. If solvable, it has exactly one solution.

Proof. Apply Theorem 6 with b = 1. Equation is solvable *iff* $g \mid 1$. That is possible only if g = 1. Such a solution is referred as the "Multiplicative Inverse of a modulo n", and denoted as $a^{-1} \mod n$.

Corollary 9. If n is prime, $ax \equiv b \pmod{n}$ has exactly one solution, for all integers a and b.

Proof. When n is prime, g = gcd(a, n) = 1, and so Corollary 7 applies. \Box