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When we repeatedly add an integer a and keep taking mod of the results
with another integer n (i.e. perform (a + a + . . .) mod n), we can find some
interesting relations. In this article, we sequentially derive some of these
relations.

Let us first get introduced to some very basic concepts of Modular Arith-
metic.

Some Basics of Modular Arithmetic

We will use Z to represent the set of all integers {. . . ,−2,−1, 0, 1, 2, . . .},
and Zn to represent the set of integers {0, 1, 2, . . . , n − 1}. Below is a very
fundamental theorem about division of integers.

Theorem 1 (Division Theorem). For any integers a, n with n > 0, there
exist unique integers q and r such that 0 ≤ r < n and a = qn + r.

q and r are called the Quotient and Remainder of this division respec-
tively. r is always non-negative and will be represented as a mod n. Note
that, for all integers a, (a mod n) ∈ Zn.

For any a, since r ≥ 0, we can write: a ≥ qn. So, if a < 0, then
q < 0. If q < 0, then qn ≤ −n. And since r < n, so if q < 0, then
a = qn + r < −n + n = 0.

Thus, in brief, we can write q < 0 iff a < 0.
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Note that, for any a, a mod n and (−a) mod n need not be same. For
example, 3 mod 10 = 3, but (−3) mod 10 = 7.

For any integers a and b, if a mod n = b mod n, we say “a is equivalent
to b modulo n”, and denote this fact as: a ≡ b (mod n). This happens iff n
divides (a− b). Notice this use of the term “mod n”, which is also used as
a binary operator like “a mod n”.

The case when a mod n 6= b mod n, is denoted by a 6≡ b (mod n).

It is easy to see that for all integers b such that b = a + nk for some
integer k, a ≡ b (mod n).

Here are some other useful facts about the mod operation. a, b, n, i are
any integers, n > 0, i ≥ 0. Please convince yourself of the reasoning behind
these. Their basis is that any integer a can be expressed as a multiple of n,
plus a mod n (Division Theorem).

(1) (a + b) mod n = (a mod n + b mod n) mod n

(2) (a− b) mod n = (a mod n− b mod n) mod n

(3) (ab) mod n = (a(b mod n)) mod n

= ((a mod n)b) mod n

= ((a mod n)(b mod n)) mod n

(4) (ai) mod n = ((a mod n)(a mod n) . . . {i times}) mod n

= (a mod n)i mod n

(5) a mod n = b mod n

⇔ (a− b) mod n = (b− a) mod n = 0

(6) (a± bn) mod n = a mod n

Multiples of a Modulo n

Suppose a, n are any integers with n > 0. For i = 0, 1, 2, . . . , n − 1, i.e.
i ∈ Zn, what are the values obtained by (ai) mod n? Below we will prove a
theorem which helps us to find them.

If we know such values for i ∈ Zn, we can trivially figure out (aj) mod n
for any integer j, because (aj) mod n = (a(j mod n)) mod n, and (j mod
n) ∈ Zn.
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Theorem 2. For any integers a, n with n > 0, a mod n 6= 0, and g =
gcd(a, n), the set of integers A = {(ai) mod n : i ∈ Zn} is same as set
G = {0, g, 2g, . . . , ((n/g)− 1)g}.

Proof. We will represent the value (ak) mod n, for any integer k (not nec-
essarily in Zn), as vk.

For any integer a, say a′ = a mod n, and so a′ ∈ Zn. Thus, any value
vi = (ai) mod n = ((a mod n)i) mod n = (a′i) mod n. That means, the set
of values obtained for a and a′ are exactly the same.

Thus, for the purpose of our proof we can assume a ∈ Zn, and the
theorem will stand proved for any integer a.

Say, t is the least positive integer such that vt = 0. That is,

(at) mod n = 0 ⇔ n | at ⇔ at is a multiple of n

Since a ∈ Zn and a mod n 6= 0, so a > 0. Also, t > 0, implying at > 0.
Say m > 0 is an integer such that nm = at. But this is a positive common-
multiple of a and n. Since we are looking for the least such t, so:

at = lcm(a, n)

⇔ at = an/gcd(a, n) = an/g

⇔ t = n/g

Note, g being the gcd of a and n, n/g is an integer. The desired value t
is n/g. If g > 1, t = n/g is in Zn.

But if g = 1, t = n, i.e. t is not in Zn. That means, (ai) mod n = 0 is
attained only for i = 0 in Zn.

Now, consider all i < t, i.e. i = 0, 1, 2, . . . , t− 1. Say, for some i1 and i2
among these, with i1 < i2, we obtain same value of vi. Then,

(ai1) mod n = (ai2) mod n ⇔ (a(i2 − i1)) mod n = 0

Say t′ = i2−i1. So, (at′) mod n = 0. But 0 < (i2−i1) < t. So, 0 < t′ < t,
which is impossible since t is the least positive integer with (at) mod n = 0.
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Hence, for all i < t in Zn, values vi are distinct. Note that when g = 1, in
which case t = n, all vi for i = 0, 1, 2, . . . , n− 1 are distinct.

Now, for any positive integer j, consider vt+j : vt+j = (a(t+ j)) mod n =
(at + aj) mod n = ((at) mod n + aj) mod n = (aj) mod n = vj .

That is, vt+1 = v1, vt+2 = v2, . . . , vt+t = vt = 0 = v0. The cycle of
vk values: (v0 = 0), v1, v2, . . . , vt−1, consisting of t distinct elements, keeps
repeating for all integers k = t onward. That means, for i ∈ Zn, values vi
consist of this t = n/g sized cycle repeated g times.

We can now conclude that set A contains t = n/g elements. What are
these elements?

Consider any element (ai) mod n. (ai) mod n is nothing but ai − nq
for some integer q (Division Theorem). Since g | a and g | n, so: g |
(ai− nq) ⇔ g | ((ai) mod n).

So, each element vi of set A is a multiple of g. Also, 0 ≤ vi ≤ n−1 for any
element vi of A (they are modulo n), and there are n/g such elements. In
the sequence of n consecutive integers 0, 1, 2, . . . , n−1 (where all vi belong),
there are total n/g multiples of g: 0, g, 2g, . . . , ((n/g)− 1)g.

So, the total n/g distinct elements of A, each being a multiple of g, can
only be: G = {0, g, 2g, . . . , ((n/g)− 1)g}.

Corollary 3. For any integers a, b, n with n > 0, a mod n 6= 0, and g =
gcd(a, n), the set of integers A = {(ai+b) mod n : i ∈ Zn} consists of values
b, b + g, b + 2g, . . . , b + ((n/g)− 1)g after taking their mod n.

Proof. Consider the set A′ = {(ai) mod n : i ∈ Zn} which is same as G =
{0, g, 2g, . . . , ((n/g)− 1)g}, due to Theorem 2.

For any integer i ∈ Zn, an element in set A, (ai + b) mod n, will equal
((ai) mod n+b) mod n. But (ai) mod n is an element in set A′. So, (consid-
ering every i ∈ Zn) all the elements of A can simply be obtained by taking
all elements of A′, adding b to each and taking mod n. But all elements
of A′ are the set G. So, set A can be obtained from set G, such that each
element k in G is modified to (k + b) mod n.

Now, for any two distinct integers j and k in Zn, we must have (j +
b) mod n 6= (k + b) mod n. So, modifying the elements of G (which is a
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subset of Zn) as above does not make any two of them equal. That is, A
consists of same number of elements as are in G, which is n/g.

In other words, A consists of: b, b + g, b + 2g, . . . , b + ((n/g) − 1)g, all
taken mod n.

Corollary 4. For any integers a, b, n with n > 0, a and n coprime (i.e.
g = gcd(a, n) = 1), the set of integers A = {(ai+ b) mod n : i ∈ Zn} is same
as Zn = {0, 1, 2, . . . , n− 1}.

Proof. From Corollary 3, and g = 1, set A consists of below values after
taking mod n: b, b + 1, b + 2, . . . , b + (n− 1).

But any set of n consecutive integers, when every element is taken mod
n, will give the set of integers: {0, 1, 2, . . . , n − 1}. So, set A will also be
same as {0, 1, 2, . . . , n− 1}.

Corollary 5. If n is prime, we have g = gcd(a, n) = 1 for all integers a.
So Corollary 4 applies for all integers a when n is prime.

We have now seen some characteristics of multiples of an integer a mod-
ulo another integer n. There is another side of this: if we are given such a
multiple (ax) mod n, can we find out x? More generally, if we are given an
integer k ∈ Zn, is there any integer x such that (ax) mod n = k. We will
now try to understand existence of such x.
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Modular Linear Equation

For given integers a, b, n with n > 0, a mod n 6= 0 and x unknown integer
in Zn, the modular linear equation looks like:

ax ≡ b (mod n)

We need to find x, the solution of this equation where x ∈ Zn.

This equation can also be written as: (ax− b) mod n = 0. So finding x
simply means that we need to find the element in set A = {(ai− b) mod n :
i ∈ Zn} which is 0 and then the corresponding i is the desired solution x.
Using Corollary 3 with its b as (−b), the set A consists of following values
after taking their mod n: −b,−b + g,−b + 2g, . . . ,−b + ((n/g)− 1)g.

Let us assume that there exists some integer m ∈ {0, 1, 2, . . . , (n/g)−1},
such that a value in set A, (−b + mg) mod n, is 0. Then,

{Such integer m exists}
⇔ (−b + mg) mod n = 0

⇔ (−b + mg) = kn {for some integer k}
⇔ b/g = −kn/g + m

Since g | n, if integer m exists, then b/g must be an integer, i.e. g | b.

On the other hand, if g | b (b/g is an integer), then applying Division
Theorem on integer b/g divided by integer n/g, we know that there exist
integers k and m such that 0 ≤ m < n/g. That will be our desired m.

As m was the remainder in above division, so m = (b/g) mod (n/g).

Thus we have proved this in both directions: g | b iff there exists m ∈
{0, 1, 2, . . . , (n/g)− 1} such that a value in set A, (−b + mg) mod n, is 0.

To conclude, the equation has a solution iff g | b.

In proof of Theorem 2, we saw that the values vi = (ai) mod n are
distinct for i = 0, 1, 2, . . . , t − 1 (t = n/g), and then cycle for i = t onward
as vt+j = vt. Similarly, values (ai − b) mod n will also repeat in cycles of
t = n/g distinct values.
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So, if solutions of the equation exist, one solution x0 must be among
{0, 1, 2, . . . , t− 1}, such that (ax0 − b) mod n = 0.

If solution x0 exists, then for every cycle of t integers i in Zn, a solution
must exist. There are g cycles, each of length t among i in Zn. So, there
will be g solutions: x = x0 + tj, j = 0, 1, 2, . . . , (n/t)− 1.

We can write above findings in a theorem as below.

Theorem 6. For given integers a, b, n with n > 0, a mod n 6= 0 and g =
gcd(a, n), the modular linear equation: ax ≡ b (mod n) is solvable iff g | b.
If solvable, there are total g solutions.

Corollary 7. For given integers a, b, n with n > 0, if a and n are coprime,
i.e. g = gcd(a, n) = 1, then the equation ax ≡ b (mod n) has exactly one
solution.

Proof. Apply Theorem 6 with g = 1. Since for all integers b, 1 | b, so the
equation is solvable and has g = 1 solution.

Corollary 8. Equation ax ≡ 1 (mod n) is solvable iff g = gcd(a, n) = 1.
If solvable, it has exactly one solution.

Proof. Apply Theorem 6 with b = 1. Equation is solvable iff g | 1. That
is possible only if g = 1. Such a solution is referred as the “Multiplicative
Inverse of a modulo n”, and denoted as a−1 mod n.

Corollary 9. If n is prime, ax ≡ b (mod n) has exactly one solution, for
all integers a and b.

Proof. When n is prime, g = gcd(a, n) = 1, and so Corollary 7 applies.
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