
Perfect Hashing: FKS Method

Nitin Verma
mathsanew.com

March 3, 2021

In a hashtable, the set of all possible keys is larger than the size of
the hashtable. So, if the actual input keys are not known in advance, we
can’t be sure if they would collide under any given hash-function. But if
the input keys are known in advance — we call them “static-keys” — is it
possible to find a hash-function giving no collision for these keys? We may
call such function a “Collision-Free Function” for the given keys, and such
method of hashing “Perfect Hashing”. With this hashing, the worst-case
time complexity for finding a key is O(1), because there are no collisions.

In this article we discuss a method of Perfect Hashing proposed by Fred-
man, Komlós and Szemerédi in [1], often called “FKS Method”. Book [2]’s
chapter “Hash Tables”, also provides a good description of this method.

Searching a Collision-Free Function

Say, we are given the set of static-keys S having n keys and we need to find
a collision-free hash-function mapping them to Zm = {0, 1, 2, . . . ,m − 1}.
How can we search for such a function? From which collection of functions
can we hope to find it, possibly after some trial-and-error?

What helps us here is the Universal Classes of hash-functions. They are
a collection of hash-functions with the property that any two distinct keys
can collide only under a specified maximum number of functions. Please
refer to the article titled Universal Classes of Hash Functions ([3]) for the
definition of Universal Class and ε-Universal Class. In this discussion, we
will make use of some relations about these classes as derived in that article.

Theorem 1 in [3] tells us that, for any ε-Universal class and given any set
S of n keys, we are guaranteed to find a certain proportion of collision-free
functions in the class, if ε and n are related as specified. Specifically, the

Copyright c© 2021 Nitin Verma. All rights reserved.

1

https://mathsanew.com

subsequent Corollary 2 ensures us that for any 1/m-Universal class, if we
choose m ≥ n(n− 1), at least half of its functions must be collision-free for
S.

This is really useful for our problem. We can choose any 1/m-Universal
class and use the hashtable size m = n(n − 1). Then we can randomly
select a function from this class and hash all the keys from S to see if there
are any collisions. We can repeat until we find a function without collision.
The above theorem ensures that we should succeed in a very few attempts
because half of the functions are what we are looking for.

Two-Level Hashing

Above method does help us to find a collision-free function in simple steps
quickly. But its drawback is that it requires the hashtable to have size m in
O(n2), which may be acceptable only when n is small enough. To solve this
issue, we use two level of hashing whenever n is not sufficiently small. The
level-1 hash-function h1 (subscript ‘1’ indicates level-1) maps the n keys of
S to Zm. We will use Si to denote the set of keys which get mapped to slot
i by h1, and si to denote |Si|, for each i ∈ Zm.

For any slot i with si ≥ 2, there are collisions. To handle such collisions,
we use level-2 hashtables Ti, one for each slot i. For each slot with si ≥ 2,
we map its si keys to hashtable Ti, using a collision-free hash-function h2,i
(subscript ‘2’ indicates level-2). Using the method from the last section, we
can search for a collision-free function, given the set of keys Si. That is,
we first choose a 1/mi-Universal class with table-size mi = si(si − 1) and
search in it for the function which is collision-free for keys in Si. For the h2,i
function thus found, we will store its necessary details somewhere, to allow
its reconstruction later.

For slots with si = 1, the table Ti has a single key and hence does not
require hashing. For slots with si = 0, table Ti is simply empty.

To lookup any key x, we first compute i← h1(x). If si ≥ 2, we compute
j ← h2,i(x). Else if si = 1, j ← 0. We can then return the key from the
level-2 hashtable Ti, from its slot j. If si = 0, we conclude that the key is
not found. Note that if the lookups may also be performed for keys outside
the static set S, we must also compare the key thus found with key x to
ensure they are equal. Because, other keys outside of set S may still map
to the same location as any key from S.

To implement this approach, we don’t need to keep a level-1 hashtable,
and level-2 hashtables (Ti) separately. We can simply maintain a single table

2

T which is a concatenation of tables T0, T1, T2, . . . , Tm−1, in that order. The
offsets of all these Ti tables in T will be calculated and stored somewhere.
So, the slot j of table Ti is located at this index of T : (offset of Ti) + j.

Number of elements required in T , corresponding to each Ti, i ∈ Zm is:

ei =

{
si, si = 0 or 1

si(si − 1), si ≥ 2

Note that, for si ≥ 2, ei = si(si − 1) ≤ s2i . Also, for si = 0 or 1,
ei = si = s2i . Thus, the total number of elements in T are:∑

i∈Zm

ei ≤
∑
i∈Zm

s2i

The last section’s method required space in O(n2). What can we say
about the space complexity of table T? Note that if h1 maps all n keys to one
slot,

∑
i∈Zm

s2i = n2, and if it maps each to a different slot,
∑

i∈Zm
s2i = n.

We can take help from Corollary 4 in [3]. We can search for h1 in a 1/m-
Universal class (ε = 1/m). That corollary then ensures that for at least half
of the functions in the class,

∑
i∈Zm

s2i has the given bound:∑
i∈Zm

s2i <
2n(n− 1)

m
+ n

Choosing m = n, we get the bound as 3n− 2, which is O(n) and hence
very useful. It tells that at least half of the functions in the class will keep
the table T size within 3n. So, we can randomly select a function from this
class and hash all the keys from S to see if this 3n bound is met. We can
repeat until we find such a function, and then use it as h1.

We could thus create an injective (“collision-free”) mapping of an arbi-
trary set of n keys to the indices in table T , which are at most 3n integers
{0, 1, 2, ..., 3n− 1}. This is an interesting achievement of the FKS method.

Variations and an Implementation

Note that h1 and h2,i can be searched in any ε-Universal classes. In above
discussion, we just considered classes with ε = 1/TableSize, for both level-1
and level-2 hashing. If we use any other ε-Universal class for level-2 hash-
ing, then the condition of Theorem 1 in [3] needs to be evaluated with the

3

corresponding ε, to find the new condition which ensures certain collision-
free functions. Similarly, if we use any other ε-Universal class for level-1
hashing, the Corollary 4 in [3] may give a different upper-bound for the sum∑

i∈Zm
s2i . The size of table T would be dependent upon this sum, similar

to what we saw above.

The following source code in C demonstrates an implementation of this
method for keys of type “unsigned int”. The universal class used for se-
lecting h1 is from example-1 mentioned in page-2 of [3], with m = n. The
same class type with same p but m = mi = si(si − 1) is used for selecting
functions h2,i. Depending upon the requirement (e.g. different key type), an
implementation can choose different universal classes for level-1 and level-2
functions.

Any symbol of the form ‘ab’ from the above discussion has been shown
as ‘a{b}’ in the code comments.

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

#include <string.h>

#define N 100 /* size of the set S of static-keys */

/* the keys can be any 32-bit integer, so choosing ‘p’ as the smallest prime

greater than 2^32-1 */

#define P 4294967311 /* 2^32 + 15 */

typedef unsigned int uint;

typedef struct object

{

uint id;

/* other data */

} object;

typedef struct hashtable

{

uint m;

uint a1, b1; /* for function h{1} */

uint a2[N], b2[N]; /* for functions h{2,i} */

object **T;

int T_offset[N+1];

int T_size;

} hashtable;

/* "id" of these N objects are all distinct, forming the static-keys set */

object objects[N];

hashtable ht;

int *ht_s;

4

/* function: h(k) = ((ak+b) mod p) mod TableSize */

#define hash(k, a, b, tsize) (((((unsigned long)a)*k + b) %(P)) %(tsize))

void construct_hashtable()

{

int i;

/* the size of each subset S{i} belonging to a level-1 slot; required

only during this method. */

int s[N];

srand(time(NULL));

ht_s = s;

ht.m = N;

/* search for level-1 hash-function h{1} */

search_h1();

/* offsets of tables T{i} in T; returns sum of T{i} sizes */

ht.T_size = calculate_offsets();

ht.T = malloc(ht.T_size*sizeof(object *));

memset(ht.T, 0, ht.T_size*sizeof(object *));

/* distribute input keys among subsets S{i}, using hash-function h{1} */

create_subsets_of_keys();

for(i = 0; i < ht.m; i++)

{

if(ht_s[i] < 2)

continue;

/* search for level-2 hash-function h{2,i} */

search_h2i(i);

/* hash subset S{i} to hashtable T{i}, using hash-function h{2,i} */

hash_subset_of_keys(i);

}

}

5

void search_h1()

{

int a, b;

while(1)

{

a = 1 + rand();

b = rand();

/* check if the randomly selected function satisfies the upper-bound

3N on the sum of s{i}*s{i} */

if(check_si_sqr_sum(a, b))

break;

}

ht.a1 = a;

ht.b1 = b;

}

int check_si_sqr_sum(uint a, uint b)

{

int i, h;

int si_sqr_sum = 0;

memset(ht_s, 0, N*sizeof(int));

for(i = 0; i < N; i++)

{

h = hash(objects[i].id, a, b, ht.m);

ht_s[h]++;

}

for(i = 0; i < N; i++)

si_sqr_sum += ht_s[i]*ht_s[i];

return si_sqr_sum < 3*N;

}

6

int calculate_offsets()

{

int i;

int lastsize = 0;

ht.T_offset[0] = 0;

for(i = 0; i < N; i++)

{

if(i > 0)

ht.T_offset[i] = ht.T_offset[i-1] + lastsize;

if(ht_s[i] > 1)

lastsize = ht_s[i]*(ht_s[i]-1);

else

lastsize = ht_s[i];

}

/* extra element T_offset[N] is for simplifying macro SIZE_T() */

ht.T_offset[N] = ht.T_offset[N-1] + lastsize;

return ht.T_offset[N];

}

void create_subsets_of_keys()

{

int i, h1, offset;

int current_size[N];

memset(current_size, 0, sizeof(current_size));

/* we can use the initial part of hashtable T{i} to store subset S{i},

till we hash its keys using level-2 hashing. */

for(i = 0; i < N; i++)

{

h1 = hash(objects[i].id, ht.a1, ht.b1, ht.m);

offset = ht.T_offset[h1];

ht.T[offset + current_size[h1]] = &objects[i];

current_size[h1]++;

}

}

7

void search_h2i(int i)

{

int a, b;

int si = ht_s[i];

int offset = ht.T_offset[i];

int tsize = si*(si-1);

/* the bitmap required for checking collision-free function */

char *buffer;

int buffer_size = (tsize/8) + 1;

char tmp;

/* Each subset S{i} is first stored in table T{i} (which is in T) at its

initial "si" elements, by create_subsets_of_keys(). Its keys are later

hashed by h{2,i} among the "si*(si-1)" elements of T{i} (if si >= 2).

For searching collision-free function for S{i}, we need a bitmap of

size tsize. For this, we utilize the CURRENTLY unused space of T{i},

which is after the index "offset+si-1". But for si=2, si*(si-1)=si,

so there is no such unused space. */

if(si == 2)

buffer = &tmp;

else

buffer = (char*) &(ht.T[offset+si]);

while(1)

{

memset(buffer, 0, buffer_size);

a = 1 + rand();

b = rand();

/* check if the randomly selected function is collision-free for

subset S{i} */

if(check_collision_free(i, a, b, buffer))

break;

}

ht.a2[i] = a;

ht.b2[i] = b;

if(si != 2)

memset(buffer, 0, buffer_size);

}

8

#define CHECK_BIT(arr, i) (arr[i/8] & (1 << (i%8)))

#define SET_BIT(arr, i) (arr[i/8] |= (1 << (i%8)))

int check_collision_free(int l1slot, uint a, uint b, char *buffer)

{

int i, h;

int offset = ht.T_offset[l1slot];

int si = ht_s[l1slot];

for(i = offset; i < offset + si; i++)

{

h = hash(ht.T[i]->id, a, b, (si*(si-1)));

if(CHECK_BIT(buffer, h))

return 0;

SET_BIT(buffer, h);

}

return 1;

}

void hash_subset_of_keys(int l1slot)

{

int i, h2, target;

int offset = ht.T_offset[l1slot];

int si = ht_s[l1slot];

uint a2 = ht.a2[l1slot], b2 = ht.b2[l1slot];

object *obj, *existing;

for(i = offset; i < offset + si; i++)

{

obj = ht.T[i];

ht.T[i] = NULL;

h2 = hash(obj->id, a2, b2, (si*(si-1)));

target = offset + h2;

existing = ht.T[target];

ht.T[target] = obj;

/* We had used the initial part of hashtable T{i} to store subset S{i},

and now we are hashing its keys across T{i}. So the "target" index

may contain a not-yet-hashed key of S{i}. */

if(existing)

{

ht.T[i] = existing;

i--;

}

}

}

9

/* size of T{i} can be inferred from offsets */

#define SIZE_T(i) (ht.T_offset[i+1] - ht.T_offset[i])

object *lookup(uint k)

{

int h1, h2, tsize, index;

object *obj;

h1 = hash(k, ht.a1, ht.b1, ht.m);

tsize = SIZE_T(h1);

if(tsize == 0)

return NULL;

index = ht.T_offset[h1];

/* no level-2 hashing was done for tsize=1 */

if(tsize >= 2)

{

h2 = hash(k, ht.a2[h1], ht.b2[h1], tsize);

index = index + h2;

}

obj = ht.T[index];

if(obj == NULL || obj->id != k)

return NULL;

return obj;

}

�

References

[1] M. L. Fredman, J. Komlós, E. Szemerédi. Storing a Sparse Table with
O(1) Worst Case Access Time. J. ACM, Vol 31 (3) (1984), 538–544.

[2] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein. Introduction to
Algorithms, Third Edition. The MIT Press (2009).

[3] Nitin Verma. Universal Classes of Hash Functions.
https://mathsanew.com/articles/

universal_classes_hash_functions.pdf (2021).

10

