Comparing Performance of Insertion Sort and
Selection Sort

Nitin Verma

mathsanew.com

November 22, 2021

Does Insertion Sort always outperform Selection Sort? Or vice versa? If
not always, under what conditions one would become faster than the other?
In this article, we will observe the factors affecting performance of these two
sorting algorithms, and see examples where one of them outperforms the
other.

An implementation of the two sorting algorithms in C has been provided
below. The input array a[] of n elements of type object (an structure) needs
to be sorted in ascending order, using the comparison function less_than().
We will be denoting any subarray of a[] from some index z to some index y
(y > z) as af[z : y].

typedef struct object

{

unsigned int key;

short fieldl;

char field2[2];

int more_fields[2];
} object;

#define less_than(ol, 02) (ol.key < 02.key)

Copyright (© 2021 Nitin Verma. All rights reserved.


https://mathsanew.com

void insertion_sort(object a[], int n)

{
int i, j;
object t;
i=1;

/* loop-invariants (specified for case n > 0):
P: a[0:i-1] contains same elements as the initial a[0:i-1]
Q: al0:i-1] is sorted */

while(i < n)

{
/* create hole (position that can be overwritten) at index i */
t = alil;
=

/* loop-invariants:
R: the "hole" is at index j
S: t is less than each element in al[j+1:i] */

while(j >= 1 && less_than(t, al[j-11))
aljl = alj-1]1;
j= i
/* copy t to the hole at index j */
aljl = t;
i++;
}
/* P and Q hold with (i = n) */
}



void selection_sort(object al[], int n)

{
int i, j, min;
object t;
i=0;

/* loop-invariants:
P: a[0:i-1] contains the i smallest elements of initial al[]
Q: al0:i-1] is sorted */

while(i < n-1)
{
min = i;
j = i+1;
/* loop-invariant R: a[min] is minimum in afi:j-1] */
while(j < n)
{
if (less_than(a[j], almin]))

min = j;

j o=+
}

/* R holds with (j = n) */

if (min '= i)
{
/* swap alil and al[min] */
t = alil;
alil = a[min];
a[min] = t;
}
i++;

}
/* P and Q hold with (i = n-1) */

/* Now a[n-1] must be among the largest, so a[0:n-1] is sorted */

}

Counting the Operations

We will simply use “transfer” to refer to the copying of an object from one
location to another, and “comparison” to refer to a less_than() call.



In insertion_sort(), the outer loop runs (n—1) times. Since the inner loop
can run anywhere between 0 to ¢ times, for our analysis we assume it to run
fi times for some f in interval [0, 1]. Each iteration of the outer loop will do
(fi+42) transfers. Due to the inner loop, there will be (fi+ 1) comparisons.
So the total number of transfers and comparisons in the method will be
respectively:

n—1
T1=Z(fi+2)=J%(T;_1)+2(n—1)

i=1

n—1
CIZZ(fi—Fl):fn(z_l)—F(n—l)

i=1

For the case when the input array is already sorted, the inner loop will
run 0 times, giving f = 0, and so T = 2(n — 1), C; = (n — 1). Here the
method has a linear time complexity in n. But when the input array is
in decreasing order, the inner loop will run ¢ times, giving f = 1, and so
Tr=(n—-1)(n+4)/2, Cr = (n—1)(n+2)/2. In this case, the method has
a quadratic time complexity in n.

For our analysis below, we will assume f = 1/2 (the element a[i] inserted
in the middle of the sorted subarray), and so:

T, — (n—li(n—i—S)
SRR 0

In selection_sort() too, the outer loop runs (n — 1) times. But the inner
loop always runs (n — ¢ — 1) times. Each iteration of the outer loop will do
(n—1i—1) comparisons (due to the inner loop) and 3 transfers (for swapping
afi] and a[min]). So the total number of transfers and comparisons in the
method will be respectively:

TS :3(7’L— 1)
n—2
Cog=> (n—i—1)

=0

n—1
:Zk {using k =n—i—1}
k=1
_ n(n2— 1) 2)



Performance Comparison

The outer loop of both the methods runs (n — 1) times, and their inner loop
runs in total almost (n—1)(n+4)/4 and n(n—1)/2 times (using Cr and Cg
from (1) and (2)). If the work done by an iteration of the inner loop were
to be roughly the same for both methods (and similarly for the outer loop
excluding the inner loop’s work), we could say that insertion_sort(), having
lesser iterations count, should outperform selection_sort().

But the factors affecting their relative performance can be many, in
addition to the visible difference in their set of operations per iteration:
compiler optimizations, hardware performance factors related to branches
and locality of reference, and so on. (For example, in each iteration of
the outer loop, selection_sort() accesses the complete subarray afi : n —
1], but insertion_sort() accesses only a part of the subarray [0 : ¢]; this
gives the former a lower locality of reference.) In fact, for any algorithm in
general, performance related conclusion should be made very carefully with
the underlying conditions specified, and often there is no simple answer.

Here we will focus on two factors which may become significant for the
performance of any comparison based sorting algorithm: the cost of array el-
ements’ transfer and the cost of comparing them. The transfer cost becomes
significant, for example, when the underlying storage has slow read/write
speed, or when each array element has large size. The comparison cost be-
comes significant, for example, when the keys are of a complex type, or the
comparison involves many steps instead of a simple ‘<’ operator.

We note from (1) and (2) that the number of transfers in selection_sort()
is always linear (in n), but it is quadratic for insertion_sort() (assuming f =
1/2). This much difference is not present in the growth of their number of
comparisons; it is quadratic for both. So, as the transfer cost gets sufficiently
high, this difference between T7 and Tg will start becoming visible in the
total costs, and selection_sort() will start outperforming insertion_sort(). As
mentioned earlier, one way the transfer cost would increase is by increasing
the size of each array element.

For example, with a randomly generated array a[] of n = 30000 el-
ements, I find that selection_sort() starts to outperform insertion_sort()
when object’s more_fields[] array has 7 or more elements (resulting in larger
sized object). These observations are for a particular system and will vary
across hardware and compiler options.

We also know from (1) and (2) that the number of comparisons required
by selection_sort() is almost double than that of insertion_sort() (assuming



f = 1/2). So an increase in comparison cost should increase the total
cost of selection_sort() more than that of insertion_sort(). While keeping
the more_fields|] array at 7 elements, if the comparison function is now
modified as below, I notice insertion_sort() outperforming selection_sort()
(again, this is system specific). Note that this function is equivalent to the
earlier one.

#define less_than(ol, 02) \
((ol.key/10)*10 + ol.key%10 < (02.key/10)*10 + 02.key%10)



