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Given an array a of N elements which are all distinct, we want to gen-
erate all the N ! permutations of its elements. Since N ! grows very fast
with N (e.g. 15! = 1307674368000), it is generally not practical to store
all the permutations in memory. The approach we take is to generate each
permutation in array a itself, process it (e.g. print), then generate a new
permutation in a, and so on.

R. Sedgewick provided a very good survey about permutation generation
algorithms in [1]. In this article, we will discuss a few recursive algorithms
for this problem. All of them are based on a common recursive structure
which is described below.

We will be denoting any subarray of a from some index i to some index
j (j ≥ i) as a[i : j]. All implementation will be in C language, and assumes
elements of array a to be of type “int”.

Common Recursive Structure

Consider a subarray a[s : N − 1] for some s. Let us call its set of N − s
elements as set B. Now, to generate all the permutations of elements of this
subarray, we can proceed as follows.

Pick some element e from set B and place it at index s of array a, while
keeping rest of the elements of B (set B \ {e}) in subarray a[s + 1 : N − 1].
Now solve the subproblem of permuting the subarray a[s+ 1 : N − 1]. After
that, repeat the above process by picking some other element from B not
already picked and placing it at index s, and permuting the rest of B in
subarray a[s+ 1 : N − 1]. Repeat this by picking each of the N − s elements
of B. This process must generate all the (N − s)! permutations of the
subarray a[s : N − 1].
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Note that, the subproblem of permuting the smaller subarray a[s + 1 :
N − 1] can be solved in a similar way. Repeating this process recursively
will eventually give us a subproblem with subarray a[N − 1 : N − 1], which
is trivial.

The question yet to be answered is, how to pick elements of B for placing
at index s without skipping or repeating any? To appreciate the challenge in
this, notice that the subproblem of a[s+ 1 : N − 1] will reorder the elements
of the subarray while permuting them. The algorithms we discuss have some
defined strategy to locate the next element of B to pick, from some index x
of the subarray. Such element is then swapped with the existing element at
index s to proceed for solving the subproblem of a[s + 1 : N − 1].

Below method depicts the above recursive structure and provides a skele-
ton in which all of our recursive algorithms will fit. generate(s) is supposed
to generate all permutations of the subarray a[s : N − 1]. The initial call is
generate(s = 0). print() prints the permutation currently in array a.

#define SWAP(i, j) {int t; t = a[i]; a[i] = a[j]; a[j] = t;}

void generate(int s)

{

int i;

if(s == N-1)

{

print();

return;

}

for(i = 0; i < N-s; i++)

{

/* Setup Block */

if(i > 0)

SWAP(s, x);

generate(s+1);

/* Cleanup Block */

}

}

Note that there are N − s iterations (size of set B), each with one recur-
sive call. The very first recursive call (in first iteration with i = 0) is made
without performing any swap — the element initially at index s remains at
index s. The “Setup Block” and “Cleanup Block” are general placeholders
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for any steps the algorithm needs to perform before and after the recursive
call respectively. When the base-case of s = N−1 is reached, a permutation
of the complete array a is ready for processing; here we just print it.

We will now discuss the recursive algorithms individually.

Fike’s Algorithm

R. Sedgewick in [1] has attributed this algorithm to C. T. Fike [2]. Following
is an implementation of this algorithm:

void fike(int s)

{

int i;

if(s == N-1)

{

print();

return;

}

for(i = 0; i < N-s; i++)

{

/* Setup Block */

if(i > 0)

SWAP(s, s+i);

fike(s+1);

/* Cleanup Block */

if(i > 0)

SWAP(s, s+i);

}

}

It is based on the idea that if each recursive call fike(s + 1) keeps the
subarray a[s + 1 : N − 1] intact upon return, we can pick each element of
B correctly (without skipping or repeating any) one by one from indices
s, s + 1, s + 2, . . . , N − 1.

Now, to ensure this, it enforces upon method fike(s) the specification that
it must keep the input subarray a[s : N−1] intact, for each s. For s = N−1,
this specification is trivially met. For any other s, it is implemented by
reversing the swap done before the recursive call fike(s + 1), once that call
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returns. So, if fike(s+1) meets the specification, each iteration of fike(s) will
also leave the subarray intact. This leads to the complete fike(s) meeting
the specification. The correctness of this algorithm is thus established by
Mathematical Induction.

An optimization is possible in above method. Note that all iterations
(except the first) do two swaps which involve the element initially at a[s].
We can exploit this fact and save some writes by assigning elements as below.
The 6 writes of two swaps are now replaced by the 3 writes in an iteration:

initial_a_s = a[s];

for(i = 0; i < N-s; i++)

{

if(i > 0)

{

a[s] = a[s+i];

a[s+i] = initial_a_s;

}

fike(s+1);

if(i > 0)

a[s+i] = a[s];

}

a[s] = initial_a_s;

Heap’s Algorithm

This algorithm is due to B. R. Heap [3]. Following is an implementation of
this algorithm.
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void brheap(int s)

{

int i;

if(s == N-1)

{

print();

return;

}

for(i = 0; i < N-s; i++)

{

/* Setup Block */

if(i > 0)

{

if((N-s)%2 != 0)

SWAP(s, N-1)

else

SWAP(s, N-i)

}

brheap(s+1);

}

}

Notice how the next element of B is picked based on whether N − s,
the number of elements in subarray a[s : N − 1], is even or odd. What is
most impressive about this algorithm is that it performs exactly one swap
for each permutation generated (do we see why?). Thus it involves total
N ! − 1 swaps. This makes the algorithm one of the efficient algorithms,
because for moving from one permutation to any other, at least one swap is
always required.

When executing this algorithm, we can notice that an invocation of this
method for any s leaves the subarray a[s : N−1] altered in a definite pattern
(compare the subarray upon method entry and exit). This pattern only
depends upon the parity of N − s, the number of elements in the subarray.
Consider the subarray:

(e1 e2 e3 e4 e5 . . . en−1 en)

For odd n, we find it becoming:

(en e2 e3 e4 e5 . . . en−1 e1)

For even n, we find it becoming:

(en e1 e4 e5 . . . en−1 e2 e3)
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The original paper [3] of this algorithm does not include a proof of cor-
rectness. D. E. Knuth in his book [4], asks to prove it as an exercise which
hints at using the “Sims Table” (section “Generating All Permutations”,
exercise 40). (I am still searching for an elegant proof of this algorithm and
of the pattern observed above.)

Intact-Rotate Algorithm

Consider the following pair of methods:

void intact(int s)

{

int i;

if(s == N-1)

{

print();

return;

}

for(i = 0; i < N-s; i++)

{

rotate(s+1);

SWAP(s, N-1);

}

}

void rotate(int s)

{

int i;

if(s == N-1)

{

print();

return;

}

for(i = 0; i < N-s; i++)

{

if(i > 0)

SWAP(s, N-i);

intact(s+1);

}

}
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Consider the iterations of intact(s). Assume that any call to rotate(s+1)
leaves the subarray a[s+1 : N−1] left-rotated by 1 place upon return. That
is, if the subarray before the call is: (es+1 es+2 . . . eN−1), it will become
after the call: (es+2 es+3 . . . eN−1 es+1).

Suppose the subarray a[s : N − 1] at the start of an iteration is:

(es es+1 es+2 . . . eN−1)

Due to the call to rotate(s + 1) followed by the swap, the subarray will
become, at the end of the iteration:

(es+1 es+2 . . . eN−1 es)

This is nothing but a left-rotation of the subarray a[s : N − 1]. Thus the
side-effect of each iteration is to left-rotate a[s : N−1]. So the total of N−s
such iterations will left-rotate this subarray (of N − s elements) by N − s
places, leaving it what it was prior to the loop. So we can conclude that
intact() leaves the subarray a[s : N − 1] intact upon return.

Now consider the iterations of rotate(s) and assume that any call to
intact(s+ 1) leaves the subarray a[s+ 1 : N − 1] intact upon return. To see
the side-effect of the iterations, we can ignore the call to intact(s + 1) and
simply consider the effect of executing the swaps. We can figure out that
when the loop terminates, the subarray a[s : N − 1] must have left-rotated
by 1 place.

Also notice that the base-case (s = N − 1) of both the methods leaves
the subarray a[N −1 : N −1] intact which can also be seen as a left-rotation
of the single element subarray.

Suppose we associate a specification to intact() and rotate() each that
they leave the subarray a[s : N − 1] intact and left-rotated respectively
upon return. In above paragraphs, we proved that intact() and rotate()
follow their specification assuming that their recursive call to the other one
also follows its own specification. As we saw, their base-case also follows the
specification. So, by applying Mathematical Induction over N − s, we can
conclude that both methods do follow their specification.

Now that we have established how a call to intact() and rotate() leaves
the subarray upon return, it is easy to see why the swapping with index
N − 1 and N − i by these methods will pick all elements of B correctly. In
conclusion, invoking any of these two methods with s = 0 must generate all
permutations of array a.
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We can notice some similarity among these two methods and the brheap()
shown earlier: each of them involves N −s iterations where almost all itera-
tions perform one swap each. The iterations of intact() do total N−s swaps
but those of rotate() and brheap() do total N − s− 1 swaps. Thus there is
one extra swap for each invocation of intact(), making this algorithm less
efficient than the Heap’s Algorithm.

Since the two methods call each other, any execution of this algorithm
must involve their alternate invocations: one particular method for even s
and the other one for odd s. Also, the structure of these methods are similar.
So we can combine these into a single method as below, which adheres to
the common recursive structure:

void intact_rotate(int s)

{

int i;

if(s == N-1)

{

print();

return;

}

for(i = 0; i < N-s; i++)

{

/* Setup Block (for rotate()) */

if(i > 0 && ((N-s)%2 == 0))

SWAP(s, N-i);

intact_rotate(s+1);

/* Cleanup Block (for intact()) */

if((N-s)%2 != 0)

SWAP(s, N-1);

}

}

Ord-Smith’s Algorithm

R. Sedgewick in [1] has attributed this algorithm to R. J. Ord-Smith [5]. This
algorithm generates the permutations in Lexicographical Order. (Article [6]
discussed the definition of this order, some of its properties, and a non-
recursive algorithm to generate permutations in this order.)

Following is an implementation of the Ord-Smith’s Algorithm:
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#define REVERSE(s1, e1) { \

int s2 = s1; \

int e2 = e1; \

\

while(s2 < e2) \

{ \

SWAP(s2, e2); \

s2++; \

e2--; \

} \

}

void ordsmith(int s)

{

int i;

if(s == N-1)

{

print();

return;

}

for(i = 0; i < N-s; i++)

{

/* Setup Block */

if(i > 0)

{

REVERSE(s+1, N-1);

SWAP(s, s+i);

}

ordsmith(s+1);

}

}

For generating permutations in lexicographical order, the initial call
ordsmith(0) must be done with array a sorted in increasing order.

Let us denote by predicates I(s) and D(s) (for any s) the fact that
subarray a[s : N − 1] is in increasing and decreasing order respectively. The
algorithm works by enforcing the following specification P upon method
ordsmith(): if ordsmith(s) is called with I(s) true, then D(s) must hold
upon its return.

Note that specification P holds trivially for s = N − 1. Now suppose,
for some other s, it holds for s+1. Consider the invocation ordsmith(s) and
assume that I(s) holds at its beginning. After its iteration of i = 0, it is
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clear that D(s + 1) must hold (since the call ordsmith(s + 1) holds P ). We
claim that at the end of each iteration, D(s+ 1) holds. This is because, any
iteration with i > 0 which begins with D(s + 1) holding performs:

(a) reversal of a[s + 1 : N − 1] resulting in I(s + 1) holding,
(b) swap which still maintains I(s + 1) (see below),
(c) call to ordsmith(s + 1) which would leave D(s + 1) holding again.

While making the recursive call, the algorithm places at index s the
elements of set B (subarray a[s : N − 1]) in increasing order. For i = 0
iteration, we already have the smallest element at index s (since I(s) holds).
For all later iterations, the swap picks the next larger element for placing at
index s. Since I(s+ 1) holds after the reversal, such larger element is easily
located by the swap at index s + i. This swap won’t alter the increasing
order of a[s + 1 : N − 1], because what replaces the element at index s + i
is the element just smaller than it.

It is this placing of increasingly larger elements at index s, which gives
the generated permutations the lexicographical order.

We now come back to the claim about D(s + 1). Since D(s + 1) holds
at the end of each iteration and the last iteration would place the largest
element of a[s : N−1] at index s, so the loop must terminate with a[s : N−1]
in decreasing order. That is, D(s) must hold upon the method’s return.

Thus, by Mathematical Induction, specification P must hold for method
ordsmith(s) for all s.

It is interesting to note that this method, though giving a lexicographical
result, does not perform any comparison among elements or inspection of
their values. These are needed only for the initial sorting of array a. Since
this method is thus a pure structural one, it must generate all permutations
of a whatever be its initial order. Though, the order of such permutations
will be based on the initial order of a, not the lexicographical order of its
elements.
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