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Given an array a of N elements which are all distinct, we want to gen-
erate all the N ! permutations of its elements.

In an earlier article titled Generating Permutations with Recursion [2],
we discussed a few recursive algorithms for this problem. All of those al-
gorithms were based on a common recursive structure, as depicted by the
following skeleton method. Please refer to that article for details about this
recursive structure (section “Common Recursive Structure”).

#define SWAP(i, j) {int t; t = a[i]; a[i] = a[j]; a[j] = t;}

void generate(int s)

{

int i;

if(s == N-1)

{

print();

return;

}

for(i = 0; i < N-s; i++)

{

/* Setup Block */

if(i > 0)

SWAP(s, x);

generate(s+1);

/* Cleanup Block */

}

}
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In this article, we will find out how we can implement those recursive
algorithms without using recursive calls. What makes our task simpler is
that all of them follow the above common recursive structure. From the
above skeleton, we will design an equivalent non-recursive skeleton, which
itself will serve as a common skeleton for writing non-recursive variants of
the algorithms.

We will now attempt to convert the above generate() method into its
non-recursive equivalent.

Common Non-Recursive Structure

A generic approach to convert a recursive method into a non-recursive one
is to simulate the recursive calls on our own stack within the method. This
stack would contain the arguments and local variables for each recursive
call. Such an approach was discussed in an earlier article titled Maintaining
the Stack for Recursion [3].

But we will follow a different approach below, which makes use of some
specific observations about the generate() method. We will now inspect
closely the execution flow during the call generate(0).

First notice that for all s < N − 1, the generate() method is simply a
loop: a sequence of iterations for each of i = 0, 1, 2, . . . , N − s− 1. Further,
whenever a permutation is printed by generate(s = N − 1), each of the
callers generate(0), generate(1), generate(2),. . . , generate(N − 2) are inside
one of their iterations with certain i. The range to which this i can belong
depends upon the respective s: 0 ≤ i ≤ N − s− 1.

To maintain this state i of (up to) N−1 active invocations of the method,
we will use an array I of N − 1 integers. I[s] will hold the value of i for
invocation of generate(s). We don’t need to maintain i for s = N − 1.

Now notice that for any s < N − 1, an execution of generate(s) sim-
ply recurses to generate(s + 1) as the very first step (after setting i =
0 in its first iteration). The execution of generate(s + 1) would do the
same thing and recurse to generate(s + 2). This goes on till execution of
generate(N−1) which prints the permutation. This suggests that, whenever
an iteration has to make a recursive call, we can simply execute the equiv-
alent of generate(N − 1): print the permutation. Though, this “execution”
of generate(N − 1) must still “return” to its caller generate(N − 2).

To keep track of the currently executing generate() call (top of the call-
stack), we will use an integer s which would correspond to the argument s
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of the call. Once generate(s) completes its last iteration (for i = N − s− 1),
it should return to its caller. This is done by decrementing the tracking
integer s.

These were some of the ideas on which the following non-recursive equiv-
alent of generate() is based. In the while loop below, the beginning of any
iteration can be seen as the point when an iteration of generate(s) resumes
its operation after the recursive call generate(s + 1) has returned.

void generate_nonrecur()

{

int I[N-1], s;

for(s = 0; s < N-1; s++)

I[s] = 0;

/* "execute" generate(N-1) */

print();

/* "return" to the caller of generate(N-1) */

s = N-2;

while(s >= 0)

{

/* "resuming" after return from recursive call generate(s+1) */

/* Cleanup Block */

if(I[s] < N-s-1)

{

I[s]++;

/* Setup Block */

SWAP(s, x);

/* "execute" generate(N-1) */

print();

/* "return" to the caller of generate(N-1) */

s = N-2;

}

else

{

/* last iteration completed */

I[s] = 0;

/* "return" to the caller */

s = s-1;
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}

}

}

The above method will serve as a common skeleton for writing non-
recursive variants of the recursive algorithms. For each algorithm, we only
need to put the Setup Block and Cleanup Block (if any) in the place indicated
in above method. The sections below will list the source code for the non-
recursive variants thus created. Please refer article [2] for the description
and recursive methods of the algorithms.

Fike’s Algorithm

void fike_nonrecur()

{

int I[N-1], s;

for(s = 0; s < N-1; s++)

I[s] = 0;

print();

s = N-2;

while(s >= 0)

{

/* Cleanup Block */

if(I[s] > 0)

SWAP(s, s+I[s]);

if(I[s] < N-s-1)

{

I[s]++;

/* Setup Block */

SWAP(s, s+I[s]);

print();

s = N-2;

}

else

{

I[s] = 0;

s = s-1;

}

}

}
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Heap’s Algorithm

void brheap_nonrecur()

{

int I[N-1], s;

for(s = 0; s < N-1; s++)

I[s] = 0;

print();

s = N-2;

while(s >= 0)

{

if(I[s] < N-s-1)

{

I[s]++;

/* Setup Block */

if((N-s)%2 != 0)

SWAP(s, N-1)

else

SWAP(s, N-I[s])

print();

s = N-2;

}

else

{

I[s] = 0;

s = s-1;

}

}

}
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Intact-Rotate Algorithm

void intact_rotate_nonrecur()

{

int I[N-1], s;

for(s = 0; s < N-1; s++)

I[s] = 0;

print();

s = N-2;

while(s >= 0)

{

/* Cleanup Block (for intact()) */

if((N-s)%2 != 0)

SWAP(s, N-1);

if(I[s] < N-s-1)

{

I[s]++;

/* Setup Block (for rotate()) */

if((N-s)%2 == 0)

SWAP(s, N-I[s]);

print();

s = N-2;

}

else

{

I[s] = 0;

s = s-1;

}

}

}
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Ord-Smith’s Algorithm

void ordsmith_nonrecur()

{

int I[N-1], s;

for(s = 0; s < N-1; s++)

I[s] = 0;

print();

s = N-2;

while(s >= 0)

{

if(I[s] < N-s-1)

{

I[s]++;

/* Setup Block */

REVERSE(s+1, N-1);

SWAP(s, s+I[s]);

print();

s = N-2;

}

else

{

I[s] = 0;

s = s-1;

}

}

}
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