Primes in Division Method of Hashing

Nitin Verma

mathsanew.com

February 6, 2021

Every hashtable uses a hash-function to map an input key to an integer
in {0,1,2,...,m — 1}, where m is the hashtable’s size. For the Division
Method of hashing, which simply takes mod m of the input integer key, we
find that it is generally recommended to use m which is a prime number. In
this article, we discuss one reason behind this recommendation.

The original form of input keys can be any data-type including integer,
char, string, struct/object containing multiple members, array of another
type etc. But they are generally transformed into a non-negative integer for
inputting into the hash-function. We will refer this integer form as key k > 0.
Note that during implementation, this key transformation process may be
combined with the hash-function computation. But for this discussion, we
will say that an integer key k is the input to the hash-function.

For any integer n > 0, we will use Z, to refer to the set of integers
{0,1,2,...,n —1}.

One of the most desired properties of a hash-function is that it should
distribute the input keys among m slots as uniformly as possible. This helps
in reducing the number of collisions among keys. But designing such function
can be difficult, just because the input keys are not known in advance. In
fact, for any choice of the hash-function, the actual input keys may only
consist of all possible keys which map to a few slots. But still, we can try
our best in selecting the function based on a very rough idea about the set
of all possible keys.

There is no single recommendation about hash-functions, which can work
best for all sets of keys. And as we will see below, the recommendation to use
a prime m for Division Method too need not work the same in all situations.

Copyright (© 2021 Nitin Verma. All rights reserved.

https://mathsanew.com

Division Method and Key Patterns

In the Division Method of hashing, the hash-function h(k) is simply:
h(k) = k mod m

It can be proved that, if the input keys k are randomly uniformly dis-
tributed over any set of mn consecutive integers (for some positive inte-
ger n), then their mod m values too will be uniformly distributed over
Zm ={0,1,2,...,m — 1}. That is, their hash-values h(k) will be uniformly
distributed over Z,,. In this situation with input keys, m being a prime or
not has no importance.

But often it is not possible to be certain that the input keys are such
random. They all, or a subset of them, may exhibit some patterns. For
example, a subset of input keys may follow a “linear-pattern”, where each
key has the form b + ai, where a and b are fixed integers and i acts as the
variable integer. Such pattern can emerge due to a variety of reasons. For
example:

1. if keys are pointers, which are all multiples of 8. Here a = 8.
2. if keys are all even or all odd. Here a = 2.

3. if keys are prices of goods most of which end at ‘9’, then a large subset
of keys will be in form 9 + 10:.

4. consider the case when the key is formed by combining multiple com-
ponents, like multiple members of an struct/object or an array. Say
there are [components, each an integer: cg,cy,co,...,c_1. Suppose,
they are multiplied by fixed integers r; to derive the integer key k as:

-1
k= E C;Ty
=0

Say, a group of such keys have all components in common, except one
component say ¢,. Then, these keys will have k in form b + (r,,)cy,
where b is fixed and component ¢,, varies.

A common example of this is strings, where each character is a com-
ponent ¢;, last character being cg. Here, 0 < ¢; < 127 and each r; can
be chosen 7', where r = 128.

Suppose a group of string keys have their last few, say n, chars com-
mon. Then every such string will have k in form b+ (r™)i, where b is
the numeric value of the n common chars, b = Z?:_ol c;rt. For exam-
ple, addresses often have their last part as country name, which would
be common among many addresses. Similarly, email-addresses have

their last part, the domain, quite common.

Prime m

Now we will understand how choosing m to be a prime number becomes
important in such linear-pattern situations.

Consider m input keys in form b + ai, with ¢ taking values of any m
consecutive integers. The hash-values for these keys are:

h(k) = (b+ ai) mod m = (b+ a(i mod m)) mod m (1)

We know that taking mod m of any m consecutive integers (here, i) will
simply give: {0,1,2,...,m — 1}. So, the hash-values taken by these m keys
are simply:

(b+ai) modm, i€{0,1,2,...,m—1}

To know further about these values, we refer to an earlier article titled
Multiples of an Integer Modulo Another Integer, specifically its Corollaries
3 and 4, which are:

Corollary 1. For any integers a,b,n with n > 0, amodn # 0, and g =
gcd(a,n), the set of integers A = {(ai+b) mod n : i € Zy,} consists of values
b,b+g,b+2g,...,0+ ((n/g) — 1)g after taking their mod n.

Corollary 2. For any integers a,b,n with n > 0, a and n coprime (i.e.
g = ged(a,n) = 1), the set of integers A = {(ai+b) mod n : i € Z,} is same
as Zn = {0,1,2,...,n — 1}.

Say ged(a,m) is g. So the hash-values of these m keys are the below
m/g distinct values, all taken mod m:

b,b+g,b+2g,....,b+ (m/g—1)g.
Now consider the different values of g:

1. g = 1: in this case, the hash-values of the m keys will be all distinct
and due to corollary 2, consist of the set: {0,1,2,...,m — 1}. So this will
be the most uniform distribution for these m keys. g = 1 means a and m
are coprime.

Since the actual input keys of the hashtable may exhibit multiple such
patterns with different a and it is not always possible to predict these pat-
terns, knowing a may not be possible. So, to make a and m coprime, the sim-
pler way is to pick m to be a prime. That would ensure that ged(a,m) =1
for all a, except when «a is a multiple of m.

2. g = m: it means, « is a multiple of m. In this case, the hash-values
of all m keys will be the same, b mod m.

Even if m is prime, there is one situation where it will not be effective.
That is when a itself is a multiple of m, which makes ¢ = m. So, while we
choose a prime m, we should try to avoid a value which divides any possible
a of the key patterns.

3. 1 < g < m: note that, for any g, the m input keys will only take
m/g distinct hash-values. That is, if g > 1, they will be distributed over
only a portion (1/g) of the total m slots. Such situation can arise when
m is a composite (not prime) and a has a common factor with m, giving
ged(a,m) > 1.

In above analysis, we considered m input keys having form b+ ai, with ¢
among any m consecutive integers. These m keys were found to map to m/g
distinct slots, 1 < g < m. What can we say about any set S of keys in the
same form (b + ai), but i taking arbitrary integer values? Due to equation
(1), we know that h(k) values of these keys will depend upon (i mod m),
not i. But, any (¢ mod m) value comes only from {0,1,2,...,m — 1}. So,
the hash-values of these S keys will be nothing but some subset of the hash-
values taken by keys with ¢ in {0, 1,2, ..., m—1}, which is what we discussed
above. That means, the keys of S can only map within the m/g slots found
above, and so we should try to keep ¢ = 1 as discussed.

|

