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There are many algorithms which divide any problem of size n into two
subproblems of equal size. Merge-Sort and Binary-Search are two exam-
ples. Some algorithms like Quick-Sort may not be able to control the two
subproblems’ sizes, but work more efficiently when the subproblems are of
equal size. Whenever we need to divide a problem into two subproblems,
why it is often good to have the two subproblems’ sizes equal?

Suppose there is a problem for which we know how to divide any instance
of the problem into two subproblems and combine their results to solve the
original instance. Also, we are able to associate a size with each problem
instance such that the size of the two subproblems (which need not be equal)
add up to the original problem’s size. We can recursively apply this dividing
procedure until the problem instances are of size at most N0. We refer such
instances as “Base Instances” and solve them by some other method. In
this article, we will refer to such a Divide-and-Conquer algorithm as “D2C”
(as it divides into 2) algorithm.

For an initial problem instance of size n, there must be at least n/N0

such base-instances. If every such base-instance requires amount of work
(number of operations) at least W0, then total work required by all of them
is nW0/N0. Additionally, some work is also required to create subproblems
and combine their results; but we do not account that here. So, we can
conclude that the work required to solve the problem instance of size n, by
any such D2C algorithm, is at least nW0/N0 which is linear in n.

Estimating Subproblem’s Work

Suppose for a given problem of size n, we know a way to divide it into two
subproblems and combine their results. But we need to find out, in what
sizes should the two subproblems be created so as to minimize the total
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work. For this, we will first need an estimation of how the work required by
each subproblem relates to its size.

For a subproblem of size s (s ≥ 1), let f(s) denote an estimate of the
amount of work required to solve it. Note that f(s) will depend upon how
exactly we solve the subproblem. We can recursively solve it by dividing it
into two subproblems of certain sizes (say, equal sizes), and find an estimate
based on that. As we have found above, any D2C algorithm will involve at
least some work which is linear in s. Sometimes, the nature of the problem
can also help us relate problem size to the work required; for example, sorting
by comparison requires at least Θ(s log2(s)) comparisons.

For this discussion, we only need to find out whether the estimated f(s)
follows the below two properties or not (instead of finding the precise f(s)),
for any positive integers s1 < s2:

1. f(s1) ≤ f(s2). That is, the work required is non-decreasing with s.

2. If f ′ denotes the Derivative of f (Differential Calculus), then f ′(s1) ≤
f ′(s2). That is, the rate of increase of f (slope of its graph) is non-
decreasing with s.

Some simple examples of such function f are (c > 0 is a constant):

f(s) = cs f ′(s) = c

f(s) = cs2 f ′(s) = 2cs

f(s) = cs log2(s) f ′(s) = c log2(s) + c/ loge(2)

Optimizing Subproblems Sizes

Having estimated the work required by a subproblem, we will now try to
find out the optimal sizes of the two subproblems. For this analysis, assume
n to be even. So, the subproblems’ sizes can also be expressed as (n/2− a)
and (n/2 +a), for some a with 0 ≤ a < n/2. The work required to solve the
two subproblems is:
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We assume that the work required to create the two subproblems and
combine their results remains same, whatever be the two subproblems’ size
distribution. So, to minimize the total work required for the size n problem,
we want to pick a which minimizes w(a). Consider the value of f at (n/2−a)
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and n/2. Due to the Mean Value Theorem from Differential Calculus, we
know that there must exist b1 in interval (n/2− a, n/2) such that:
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(Note that although n/2 and a are integers, but b1 need not be one.)
Similarly, there must exist b2 in interval (n/2, n/2 + a) such that:
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As b1 ≤ b2, so due to property (2) of f , f ′(b1) ≤ f ′(b2). As a ≥ 0,
f ′(b1)a ≤ f ′(b2)a. Thus, equations (1) and (2) imply:
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= w(a)

So, we should pick a = 0 to minimize w(a). That means to choose the
two subproblems sizes as n/2 each. Note that, although we are interested
in values of f only at integers, but we could bring in Differential Calculus
as a useful tool.

Discarding of Subproblems

For some kinds of problems, we may need to solve only one of the two sub-
problems, discarding the other one. For example, Binary-Search algorithm
discards half of the array (one of the two subproblems) after each compari-
son. In situations where we may end up discarding some of the subproblems,
the number of base-instances may be less than linear in n, and so will be the
total work required. For example, Binary-Search involves O(log2(n)) work.

How do we decide the two subproblems sizes in such algorithms? Say, we
want to optimize the worse case where the “costlier” of the two subproblems
gets picked, discarding the other one. The costlier subproblem requires work:

w′(a) = max
(
f
(n

2
− a

)
, f

(n
2

+ a
))

= f
(n

2
+ a

)
Because, if f follows property (1), f(n/2 + a) is costlier. To minimize it, we
choose a = 0, i.e. the subproblems of size n/2 each.
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