
Worst-Case Number of Comparisons in Sorting

Nitin Verma
mathsanew.com

November 29, 2021

Insertion Sort, Selection Sort, Quick Sort and Merge Sort are a few
examples of Comparison-based Sorting Algorithms. Let us denote by A any
algorithm in this class of sorting algorithms. In this article, we will create a
model of algorithm A and find out how to construct an adverse input for A
using this model. This will help us in finding a lower-bound on the number
of comparisons which A must do in the worst-case.

Let a = (a0, a1, a2, . . . , an−1) be an array of n distinct elements, which
needs to be sorted by A in increasing order using a comparison function f .
For any two elements ai and aj , f(ai, aj) will return true to indicate ai < aj ,
and false otherwise. Since A is a comparison-based sorting algorithm, the
only information about the elements which it can use for sorting is their
pairwise order obtained using f ; it cannot use the value of their keys directly.

Since A can be any comparison-based sorting algorithm, we don’t know
how it actually works; its structure, loops and conditionals are all unknown.
We only know that it would do a sequence of comparisons and output a
permutation of the elements of a which is sorted. There are total n! possible
permutations of the n elements of a, and exactly 1 of them is sorted.

A Model of Algorithm A

When algorithm A begins, each of the n! permutations can possibly be
the sorted permutation. When A makes its 1st comparison between some
elements ai and aj , if the order comes out to be ai < aj (say), the best it
“knows” is that any permutation in which ai appears after aj cannot be the
sorted one. Thus, after this comparison, A is left with all those permutations
in which ai appears before aj , and each of these again can possibly be the
sorted one. It is only by another comparison between some elements that A
would perhaps be further reducing this left-out set of permutations.

Copyright c© 2021 Nitin Verma. All rights reserved.

1

https://mathsanew.com

Thus, at any point during execution of A, there is a set of permuta-
tions each of which can possibly be the sorted permutation, and the sorted
permutation must belong to this set. We will call this set the “set of can-
didate permutations”, and denote it as S. By a sequence of comparisons,
A keeps gathering “knowledge” about the elements’ order, which effectively
keeps reducing S, until it is left with only 1 permutation in S; this single
permutation must be the sorted one.

What we have discussed above is only a model of the algorithm A; it
may be called a Model of Candidate Permutations. Many examples of A,
like Insertion Sort and Quick Sort, do not actually maintain any set of can-
didate permutations. The “knowledge” they gather by doing comparisons is
recorded by them in the form of their program state, like a sorted subarray
or array partitions created based on a pivot. The partial sorted order thus
recorded is in fact a representation of the set of candidate permutations.

The above described model of A can be expressed as below. ai is repre-
sented as a_i and aj as a_j. P is the set of all permutations in S with ai
occurring before aj , and Q is the set of all the remaining ones (S \ P).

S <- (set of all n! permutations)

while(|S| > 1)

{

if(f(a_i, a_j))

S <- P

else

S <- Q

}

/* Output the single permutation left in S as the sorted one */

Note that after any k number of iterations, each permutation in S is
consistent with the output of all k comparisons made so far. For example,
if two of these comparisons returned a2 < a1 and a5 < a2, each permutation
in S must have a5 appearing before a2, and a2 appearing before a1.

Also, since subsets P and Q are simply two partitions of set S, the larger
of P and Q must have cardinality at least |S|/2.

This model of algorithm A extracts from A only its sequence of com-
parisons and attaches to that sequence a set S of all permutations possible
under the comparison responses gathered so far. As long as S contains more
than one permutation, A has no way to tell the correct sorted permutation;
if it makes any “guess”, that can be wrong. So, A cannot terminate until S
has only one permutation left.

2

Constructing an Adverse Input

For an input array a of n elements, algorithm A may require a varying
number of comparisons depending upon the initial order of the elements.
We are interested in the maximum among these number of comparisons,
which can be called the number of comparisons in the “worst-case”, and
denoted Cw.

Since we do not know how exactly A works, it is impossible to construct
its worst-case input. What we will instead do is construct an adverse input
and count the least number of comparisons Cd which A would do for that
input. Since we must have Cw ≥ Cd, Cd will give us a lower-bound on Cw.

To construct an adverse input, we will take some array a with its keys
uninitialized and modify the comparison function f as follows. f will keep
track of the set S. To compare ai and aj , instead of using their keys, it will
check how many permutations in S have ai occurring before aj (the subset
P defined earlier). If it finds |P | ≥ |Q|, it will respond with output “ai < aj”
(true), otherwise it will respond with “ai ≥ aj” (false). This will result in
the algorithm A always left with the larger of the two subsets P and Q,
hence more number of candidate permutations to work with. As mentioned
earlier, this larger subset must have cardinality at least |S|/2.

Since this modified function f does not use the keys, throughout the
execution of algorithm A the keys would remain unused; that’s why we
could leave them uninitialized. Now, how can we really initialize the keys
of the input array a, so that A would execute in exactly the same manner,
but with the original comparison function f? In other words, how can we
construct such adverse input?

For that, we will use the sorted output permutation from above execution
of A. The keys of input array a can be initialized such that their sorted order
would be the same as this permutation. For example, with n = 5, if the
output permutation obtained above is (a3, a0, a2, a4, a1), the keys of a should
be chosen such that a3 < a0 < a2 < a4 < a1. For integer keys with f based
on their numerical order, this can be done, for example, by choosing the
keys for a3, a0, a2, a4 and a1 as 1, 2, 3, 4 and 5 respectively.

We know that the output permutation must be consistent with the result
of all the comparisons made in above execution of A. So, the adverse input
constructed using its order must cause exactly the same comparison results
and same execution flow of A.

Having constructed an adverse input, let us now count Cd. After each
comparison, A is left with the subset having cardinality at least |S|/2. Since

3

the cardinality of S is n! initially, after k comparisons, it must be at least
(n!)/2k. So algorithm A will require at least Cd comparisons till the cardi-
nality becomes 1, where:

n!

2Cd
≤ 1

⇔ Cd ≥ log2(n!)

And since Cw ≥ Cd, we have:

Cw ≥ log2(n!) (1)

It can be proved that log2(n!) belongs to the set Θ(n log2 n) (see [1]: chap-
ter 3 section “Factorials”, and exercise 8.1-2). So we conclude that, any
comparison-based sorting algorithm will do at least log2(n!) (Θ(n log2 n))
comparisons for its worst-case input.

�

References

[1] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein. Introduction to
Algorithms, Third Edition. The MIT Press (2009).

4

