
Successor in Binary Search Trees

Nitin Verma
mathsanew.com

October 22, 2020

A Binary Search Tree (BST) is structurally same as a Binary Tree, but
its nodes’ keys follow certain property. When we define the successor of a
node in BST, we can only depend upon its Binary Tree structure, not its
keys. In a BST T , the successor of a node x can be defined to be the node
which is processed just after x during Inorder Tree Walk of T (Chapter 12
in [1]). If x is the last processed node, then its successor is null. In this
article, we will understand the method to locate successor of x starting with
x.

Figure 1: Inorder Tree Walk

1

2

3

4

5

6

7

8

9

10

Copyright c© 2020 Nitin Verma. All rights reserved.

1

https://mathsanew.com


Figure 1 shows a Binary Tree with its nodes labeled according to their
order of processing during Inorder Tree Walk. Observe where the first (1)
and last processed (10) nodes are located in the tree. And how a node and
its successor are located relative to each other, specially node 8’s successor
9, and node 4’s successor 5.

The recursive method for Inorder Tree Walk closely resembles the very
definition of Inorder Tree Walk, and can be written in C language as:

void inorder(node *x)

{

if(x->left) inorder(x->left); /* step (1) */

process(x); /* step (2) */

if(x->right) inorder(x->right); /* step (3) */

}

node represents a structure for tree nodes, its left/right members store
the left/right child’s pointers. The initial call has T ’s root as x.

We will try to relate the locations of a node and its successor just by
understanding the above method’s structure. First, we can conclude the
following about the first and last processed nodes during inorder(x), where
x is any node in T :

1. Say f is the first node processed. Note that, at any point, all calls
on the callstack except the topmost (latest) one, must be at their
recursive step: step (1) or (3). Since inorder(f) must be the first call
which reaches step (2), its step (1) must not have recursed. Also, no
invocation of this method has yet reached step (3) which can happen
only after step (2). So, all calls starting at inorder(x) till the caller
of inorder(f), have recursed only via step (1), by accessing the left
pointer. That is, path from x to f consists of 0 or more left pointers,
and f → left must be null.

2. Say l is the last node processed. Since inorder(l) must be the last
one which reaches step (2), no other call on the callstack must have
recursed via step (1) as that is always followed by step (2) of processing
the node. It means, they must have recursed via step (3), by accessing

2



the right pointer. Further, step (3) in inorder(l) must not result in
the recursive call. That is, path from x to l consists of 0 or more right
pointers, and l → right must be null.

We now come to the problem of finding successor s of x. Recall that s is
the node processed just after x during inorder walk of T . During this tree
walk, consider the invocation of inorder(x), where x is processed in step (2).
Now, if x has the right-child xR, then immediately after processing x, step
(3) will do inorder(xR). Since any invocation of inorder() processes at least
one node, so will that of inorder(xR). The very first node processed during
this will be the successor s of x. By applying conclusion (1) to inorder(xR),
we can say that the path from xR to s consists of 0 or more left pointers,
and s → left must be null. That is, path from x to s consists of a right
pointer, then 0 or more left pointers, such that s → left is null. In Figure
1, node 8’s successor 9 is such an example.

But if x has no right-child, the call to inorder(x) will return just after
processing x, without processing any other node. Consider all other calls of
inorder() on the callstack, during inorder(x). All these calls are for nodes
ancestors to x; from root node till parent of x. Call the closest ancestor of
x (its parent) as a1, a1’s parent as a2, a2’s parent as a3 etc. So, inorder(x)
was called by inorder(a1). When inorder(x) returns, inorder(a1) must have
completed either step (1) or (3). If it is step (1), then next processed node
is a1, making it the successor s. If it is step (3), inorder(a1) would return to
its caller, inorder(a2). Again, inorder(a2) must have completed either step
(1) or (3), and similar argument applies. Thus, the successor s of x is its
closest ancestor such that inorder(s) is at step (1) during inorder(x).

All ancestors closer than s are at step (3) and will simply return once
x is processed. And then, inorder(s) will process node s via its step (2).
Say, left-child of s is sL. x is the last node processed during step (1) of
inorder(s), i.e. inorder(sL). Hence, if x has no right-child, the path from s
to x consists of a left pointer (accessed in step (1)), followed by 0 or more
right pointers (accessed in step (3)). In Figure 1, node 4’s successor 5 is
such an example.

It is also possible that no ancestor of x is at step (1) during inorder(x).
Then, the path from root to x consists of 0 or more right pointers. By
applying conclusion (2) to inorder(root), x is the last processed node of T
with no successor.

3



To summarize:

1. If x has the right-child xR, then s is the first node processed during
inorder(xR).

2. Otherwise, s is its closest ancestor whose left-child sL appears in path
from s to x. x is the last node processed during inorder(sL).

Alternate Derivation

Here is an alternate way to derive the relation between locations of x and
s. For below discussion, we allow ancestors of a node to include that node
itself. We know that any two nodes in a binary tree must have at least one
common ancestor. Say, c is the common ancestor of x and s closest to them.
During inorder(c), both x and s must get processed. They both cannot get
processed during step (1) of inorder(c), because then c’s left-child would be
their closest common ancestor, a contradiction. Similarly, they both cannot
get processed during the step (3). Also, x and s should not get processed
during step (1) and (3) respectively, because step (2) in the middle processes
c, but s is the successor of x.

This leaves only below possibilities:

1. x is processed during step (1) and so its successor s must be processed
at step (2), meaning c = s. x has to be the last node processed during
step (1) of inorder(c = s). In this case, s is an ancestor of x.

2. x is processed at step (2) and so its successor s must be processed
during step (3), meaning c = x. s has to be the first node processed
during step (3) of inorder(c = x). In this case, x is an ancestor of s.

(The second possibility corresponds to the case of last section with x
having the right-child, and first possibility corresponds to x having no right-
child.)

By earlier conclusions on page 2, we already know how to locate the first
and last node processed during inorder() call of any node.

We can use similar reasoning to locate the next processed node after a
given node during Preorder and Postorder Tree Walks.

4



References

[1] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford
Stein. Introduction to Algorithms, Third Edition. The MIT Press, 2009.

5


