Symmetry in the Roots of a Quadratic Equation

Nitin Verma
mathsanew.com

April 8, 2021

One way to write a Quadratic Equation is:

$$
\begin{equation*}
a x^{2}+b x+c=0 \tag{1}
\end{equation*}
$$

where, a, b, c are known real-numbers with $a \neq 0$, and x is an unknown number. Suppose we know one root, r_{1}, of this equation. Then,

$$
\begin{array}{rlrl}
& & a r_{1}^{2}+b r_{1}+c & =0 \\
\Leftrightarrow & r_{1}\left(r_{1}+\frac{b}{a}\right) & =-\frac{c}{a} \tag{3}
\end{array}
$$

So, there are two terms on LHS, r_{1} and $\left(r_{1}+b / a\right)$, which multiply to give a constant $-c / a$ on RHS. Just by looking at this relation, can we know anything about another root r_{2} of (1)? Finding such r_{2} is equivalent to finding a number which can replace r_{1} in (3). That is, the two terms r_{2} and ($r_{2}+b / a$) must also multiply to give the same constant $-c / a$.

Multiplication operation is commutative. So, one way to get the same result is to exchange the two terms being multiplied in (3), and treat ($r_{1}+$ $b / a)$ as r_{2} and r_{1} as $\left(r_{2}+b / a\right)$. But that would require:

$$
r_{2}=\left(r_{1}+\frac{b}{a}\right)=\left(r_{2}+\frac{b}{a}+\frac{b}{a}\right) \quad \Leftrightarrow \quad \frac{2 b}{a}=0
$$

which is possible only if $b=0$. So this did not work. Let us try again, but this time we not only exchange the two terms but also negate each, which would still give the same result on multiplication. So, now we treat $-\left(r_{1}+b / a\right)$ as r_{2}, and $-r_{1}$ as $\left(r_{2}+b / a\right)$. This is feasible because it yields:

$$
r_{2}=-\left(r_{1}+\frac{b}{a}\right)=-\left(-r_{2}-\frac{b}{a}+\frac{b}{a}\right)=r_{2}
$$

Copyright © 2021 Nitin Verma. All rights reserved.

Thus we have found another root $r_{2}=-\left(r_{1}+b / a\right)$. We could arrive at it by using the fact that two multiplication terms can be exchanged, and both negated, to give the same result. The relation can also be expressed as:

$$
r_{1}+r_{2}=-\frac{b}{a}
$$

After doing this, we may be curious to look for a way of using the commutativity of addition, like we did for multiplication (and exchange the two terms being added). We can rewrite (2) as below, assuming $r_{1} \neq 0$ and dividing both sides by r_{1} :

$$
\begin{array}{rlrl}
& & a r_{1}+b+\frac{c}{r_{1}} & =0 \\
\Leftrightarrow & r_{1}+\frac{c}{a r_{1}} & =-\frac{b}{a} \tag{4}
\end{array}
$$

We now try to find r_{2} which can replace r_{1} in above (again assuming $r_{2} \neq 0$). Note that the LHS adds two terms r_{1} and $c / a r_{1}$ to give a constant $-b / a$. Can we exchange these two terms and treat $c / a r_{1}$ as r_{2}, and r_{1} as $c / a r_{2}$ (for this we need $c \neq 0$, because r_{1}, r_{2} are non-zero)? In fact this is feasible, because it yields:

$$
r_{2}=\frac{c}{a r_{1}}=\frac{c}{a} \cdot \frac{a r_{2}}{c}=r_{2}
$$

Thus, again we could find another root $r_{2}=c / a r_{1}$. Though, we arrived at this under some assumptions. The relation can also be expressed as:

$$
r_{1} r_{2}=\frac{c}{a}
$$

In both of the exercises above, we could exchange the two terms being multiplied (or added) for one root, to give us the corresponding two terms for another root. This shows us a symmetry between the two roots. Another way to observe this symmetry is through the expressions $r_{1}+r_{2}$ (equaling $-b / a$) and $r_{1} r_{2}$ (equaling c / a), where r_{1} and r_{2} appear in the same way and so are interchangeable.

Side Note

Above we could establish the relations about sum and product of the roots (though with some assumptions). There are other ways also to arrive at
these relations. Equation (2) for r_{1}, and similar one for r_{2}, can be combined and re-arranged as:

$$
\begin{aligned}
& & a r_{1}^{2}+b r_{1}+c & =a r_{2}^{2}+b r_{2}+c \\
& \Leftrightarrow & a\left(r_{1}^{2}-r_{2}^{2}\right) & =b\left(r_{2}-r_{1}\right) \\
& & \left\{\text { if } r_{1} \neq r_{2}\right\} & \\
& \Leftrightarrow & a\left(r_{1}+r_{2}\right) & =-b \\
& \Leftrightarrow & r_{1}+r_{2} & =-\frac{b}{a}
\end{aligned}
$$

Also, combining equation (4) for r_{1} and similar one for r_{2} :

$$
\begin{array}{rlrl}
r_{1}+\frac{c}{a r_{1}} & =r_{2}+\frac{c}{a r_{2}} \\
& & r_{1}-r_{2} & =\frac{c}{a}\left(\frac{1}{r_{2}}-\frac{1}{r_{1}}\right) \\
& & \left\{\text { if } r_{1} \neq r_{2}\right\} & \\
\Leftrightarrow & & 1 & =\frac{c}{a}\left(\frac{1}{r_{1} r_{2}}\right) \\
\Leftrightarrow & & r_{1} r_{2} & =\frac{c}{a}
\end{array}
$$

But these derivations involved some assumptions (like $r_{1} \neq r_{2}$), and so are not thorough. There is a complete proof of these relations based on the Factor Theorem (which itself is a consequence of the Polynomial Remainder Theorem). Due to this theorem, if r_{1}, r_{2} are roots of (1), then, $\left(x-r_{1}\right)$ and $\left(x-r_{2}\right)$ are factors of the quadratic polynomial on the LHS of (1). So,

$$
\begin{aligned}
\quad a x^{2}+b x+c & =a\left(x-r_{1}\right)\left(x-r_{2}\right) \\
\Leftrightarrow \quad a x^{2}+b x+c & =a x^{2}-a x\left(r_{1}+r_{2}\right)+a\left(r_{1} r_{2}\right)
\end{aligned}
$$

Equating the coefficients of same powers of x of both sides, we get:

$$
\begin{aligned}
r_{1}+r_{2} & =-\frac{b}{a} \\
r_{1} r_{2} & =\frac{c}{a}
\end{aligned}
$$

Of course, we can also prove these relations by first deriving the roots to be $\left(-b \pm \sqrt{b^{2}-4 a c}\right) / 2 a$, and then simplifying $r_{1}+r_{2}$ and $r_{1} r_{2}$.

