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Let α < 1 be any positive real number and N any positive integer. For
any real number x, let {x} denote the fractional part of x, i.e. {x} = x−bxc.
What can we say about distribution of values:

{α}, {2α}, . . . , {Nα} (1)

in the interval [0,1]? Do these values get clustered at some places or they
are almost uniformly spread across [0,1]?

In this article, we will try answering the above with help of the Three
Distance Theorem. The theorem is also known as the Three Gap Theorem
and Steinhaus Conjecture (due to Hugo Steinhaus, who originally conjec-
tured it).

We will often refer the values in (1) as {mα} where m is a positive
integer. Whenever α is a rational number p/q, it will be assumed that p and
q are positive coprime integers and p < q.

For any real number α′ > 1 which is not an integer, we know that there
exist integer n and another positive real number α < 1 such that α′ = α+n.
So, for any positive integer m, {mα′} = {mα}. Hence, all values {mα′} are
exactly same as values {mα} and we can restrict our analysis to α < 1.

The α being a real number can be rational or irrational. Say, α is
a rational number p/q. With the help of Modular Arithmetic (refer to
Corollary 4 in article titled Multiples of an Integer Modulo Another Integer),
it can be proved that, for m = 1, 2, . . . , q, the values {mα} are all distinct
and form the set: S = {0, 1/q, 2/q, . . . , (q − 1)/q}.

For m = q + 1 onward, these {mα} values repeat, because for n =
1, 2, 3, . . ., {(q + n)(p/q)} = {n(p/q)}. So for any N ≥ q, we now know that
the values in (1) form the set S and so are distributed uniformly in interval
[0,1], spaced by distance 1/q.
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For any N < q, we only know that values {mα} are some subset of S
of size N , but we do not know any further about their distribution. This is
where the Three Distance Theorem will help us.

Now, say α is an irrational number. That is, there exist no integer p and
q such that α = p/q. Do the values {mα} repeat in this case also? Assume
that they repeat and {m1α} = {m2α} for some positive integers m1 and m2

with m1 < m2. Then,

{m1α} = {m2α}
⇔ m2α−m1α = an integer, say n

⇔ α(m2 −m1) = n

⇔ α = n/(m2 −m1)

But this would mean α is a rational number, a contradiction.

Thus we arrive at an interesting conclusion that when α is irrational,
values {mα} are distinct for all positive integers m. Similarly we can prove
that when α is irrational, there is no positive integer m such that {mα} = 0.

The basic statement of the Three Distance Theorem is very simple. It
says that, if the values in (1) are sorted and we find the differences of all
neighboring values (including interval boundaries 0 and 1), which we can
call “gap lengths”, then there are either two or three distinct gap-lengths.
The theorem holds for all α and N specified in (1), except that when α is
rational p/q, then it only holds for N < q.

When α = p/q, then as discussed above, for all N ≥ q, there will be only
one distinct gap-length of 1/q. Throughout this discussion, we assume that
N < q whenever α is rational p/q.

The figure 1 below shows N = 30 points for α as rational 107/271,
as irrational φ − 1 (φ is the Golden Ratio) and irrational π − 3 (φ ≈
1.6180339 . . . , π ≈ 3.14159 . . .). As per the theorem, for each case, there
must be two or three distinct gap-lengths between neighboring points, in-
cluding 0 and 1. We only took α < 1, but as noted earlier, the {mα} values
will be same if we add a positive integer to the α.
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Figure 1: Some α with N = 30
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α = π − 3

There are further details in this theorem as we will see below. It also
makes use of the concept of Continued Fractions. So we will first review the
necessary background. The theorem’s statements and some of its details
provided below are based on [1] and [2].

Background

For any positive real number α, its Simple Continued Fraction can be written
as:

α = a0 +
1

a1 + 1
a2+...

where for all i > 0, ai are positive integers, and a0 is a non-negative integer.

If α is irrational, this continued fraction never terminates, i.e. contains
infinitely many ai terms, and is denoted by: [a0; a1, a2, . . .]. For rational α,
it always terminates at some term an, and is denoted by: [a0; a1, a2, . . . , an].

For example, 25/11 = [2; 3, 1, 2], 14/9 = [1; 1, 1, 4], the Golden Ratio φ
(irrational) = [1; 1, 1, 1, . . .], π (irrational) = [3; 7, 15, 1, 292, . . .].
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We may consider only the first few ai terms as below and call it the kth

Convergent : pk/qk = [a0; a1, a2, . . . , ak]. For example,

p0/q0 = a0

p1/q1 = a0 + 1/a1

p2/q2 = a0 + 1/(a1 + 1/a2)

If we define p−1 = 1, q−1 = 0, the following recurrence relations hold for
all k ≥ 0:

pk+1 = ak+1pk + pk−1

qk+1 = ak+1qk + qk−1 (2)

It is known that pk and qk are coprime for all k.

The Three Distance Theorem also involves use of integer values (qk−1 +
qk) for k ≥ 0. Note that the sequence of qk values is: q−1 = 0, q0 = 1, q1 =
a1, q2 = a2a1 + 1 etc. From (2) we also know the recurrence relation of qk.
Since ai ≥ 1 for all i > 0, qk are strictly increasing with k for k ≥ 1. We
also see that the sequence of (qk−1 + qk) is strictly increasing with k for all
k ≥ 0, starting at 1 for k = 0.

Hence, any integer N ≥ 1 either equals (qk−1 + qk) for some k ≥ 0, or
is between two consecutive values of this sequence. We can conclude that,
any integer N ≥ 1 corresponds to a unique integer t ≥ 0 such that:

qt−1 + qt ≤ N < qt + qt+1 (3)

Note that the last endpoint of this range can be written as:

qt + qt+1 − 1 = qt + (at+1qt + qt−1)− 1

= qt−1 + (at+1)qt + (qt − 1)

So, in the range of (3), (N − qt−1) varies from qt to (at+1)qt + (qt − 1).
Due to the Division Theorem, given (N − qt−1) and qt, there exist unique
integers r and s such that:

(N − qt−1) = rqt + s (4)

0 ≤ s ≤ qt − 1 {Division Theorem}
1 ≤ r ≤ at+1 {due to the range of (N − qt−1)}
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Note that for a fixed t, as N varies in range of (3), every increase in N
by qt would increase r by 1.

Thus we now know that, any integer N ≥ 1 corresponds to unique inte-
gers t, r and s as defined by (3) and (4).

Let us now move to exploring the theorem.

Three Distance Theorem

Let α < 1 be any positive real number and N any positive integer. As said
earlier, we assume that N < q whenever α is rational p/q. Now consider
the increasing order of the N values {α}, {2α}, . . . , {Nα}, which must be
all distinct (as concluded on page 2). Say u1, u2, . . . , uN denote this order
such that {u1, u2, . . . , uN} = {1, 2, . . . , N} and, {uiα} < {ui+1α} for i =
1, 2, . . . , N − 1. So the lowest and highest values are {u1α} and {uNα}
respectively.

The basic statement of the theorem is as below.

Theorem 1 (Three Distance Theorem). For all i = 1, 2, . . . , N − 1,

ui+1 − ui =


u1, 1 ≤ui< N + 1− u1 (a)

u1 − uN , N + 1− u1 ≤ui< uN (b)

−uN , uN ≤ui< N + 1 (c)

The points {uiα} and {ui+1α} are neighbors. The theorem says that for
any pair of integers ui and ui+1, their difference can only be one among the
three values: u1, u1 − uN ,−uN .

Gap Lengths

For i = 1, 2, . . . , N − 1, let us refer to the distance from {uiα} to {ui+1α}
as gap-i. The distance from 0 to {u1α} can be referred as gap-0, and that
from {uNα} to 1 can be referred as gap-N . Trivially, gap-0 and gap-N are
{u1α} and 1− {uNα} respectively.
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Consider some gap-i such that ui lies in interval (b) of theorem 1. Then,

{ui+1α} = {(ui + u1 − uN )α}
= {uiα+ u1α− uNα}

(from all the three real numbers inside {}, we can

remove their integer part, and add 1 for the

negative number)

= {{uiα}+ {u1α}+ 1− {uNα}}

Say, f = {u1α} + 1 − {uNα}, which is the sum of gap-0 and gap-N . So,
0 < f ≤ 1. Then,

{ui+1α} = {{uiα}+ f}
(since 0 < {uiα} < 1, so, 0 < {uiα}+ f < 2)

= {uiα}+ f , or, {uiα}+ f − 1

(since {uiα}+ f − 1 ≤ {uiα}, but {ui+1α} > {uiα})
= {uiα}+ f

= {uiα}+ {u1α}+ 1− {uNα}

Thus, in case when ui lies in interval (b), gap-i is {ui+1α} − {uiα} =
{u1α} + 1 − {uNα}. Similarly, we can prove that when ui lies in intervals
(a) or (c), gap-i is {u1α} and 1− {uNα} respectively.

Note that uN , which corresponds to gap-N , also falls into the range of
interval (c). Now we can conclude the following about all of the N + 1 gaps,
including gap-0 and gap-N . We count the number of ui integers in each of
the three intervals.

Theorem 2. Among the total N+1 gaps, there are N+1−u1 gaps of length
L1 = {u1α}, N+1−uN gaps of length L2 = 1−{uNα}, and uN +u1−(N+1)
gaps of length L1+L2. The gaps of length L1+L2 exist iff uN +u1 > N+1.

Can the gap-lengths L1 and L2 ever become equal? It can be proved
that they will always be distinct for irrational α. Assuming they are equal:

L1 = L2

⇔ {u1α} = 1− {uNα}
⇔ {u1α}+ {uNα} = 1

⇔ u1α+ uNα = an integer, say n

⇔ α = n/(u1 + uN )

But this would mean α is a rational number, a contradiction.
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Corollary 3. For irrational α, the gap-lengths L1 and L2 are never equal.
So, when gaps of length L1 + L2 exist, there are three distinct gap-lengths,
otherwise two distinct gap-lengths.

We have seen how the length of all gaps are related to u1 and uN . The
next section presents a theorem which relates u1 and uN to the Continued
Fraction of α.

u1, uN and Continued Fraction of α

Theorem 4. For integer N ≥ 1, let t, r and s be the unique integers as
defined by (3) and (4). Then,

if t is even, u1 = qt, uN = qt−1 + rqt

otherwise, u1 = qt−1 + rqt, uN = qt

Given α and N , we can use theorem 4 to find u1 and uN from the
continued fraction of α and then use theorem 2 to find the gap-lengths.

Let us see an example of how the gap-lengths get created with α = 7/23.
Its simple continued fraction is: 7/23 = 0 + 1/(3 + 1/(3 + 1/2)) = [0; 3, 3, 2].

So the convergents are: p0/q0 = 0/1, p1/q1 = 1/3, p2/q2 = 3/10, p3/q3 =
7/23.

The figure 2 below shows N = 8 and N = 11 points. The value {mα} is
indicated with (m), m = 1, 2, . . . , N . Since all values {mα} = {7m/23} will
be some multiples of 1/23, so in the figure we have also marked all multiples
of 1/23 in [0,1].

Figure 2: α = 7/23

0 1

(1) (2) (3)(4) (5) (6)(7) (8)

0 1

(1) (2) (3)(4) (5) (6)(7) (8) (9)(10) (11)
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Since q0 + q1 = 4 and q1 + q2 = 13, so for both N = 8 and N = 11, t = 1
based on (3). Using (4) with t = 1,

N − qt−1 = rqt + s ⇔ N − 1 = 3r + s

So, for N = 8, r = 2 and s = 1. For N = 11, r = 3 and s = 1.

Using theorem 4, as t is odd, so for N = 8:

u1 = rqt + qt−1 = 2(3) + 1 = 7, uN = qt = 3

and for N = 11:

u1 = rqt + qt−1 = 3(3) + 1 = 10, uN = qt = 3

So for both N , the gap-length L2 = 1−{uNα} = 1−{3(7/23)} = 2/23.
For N = 8, gap-length L1 = {u1α} = {7(7/23)} = 3/23. For N = 11,
gap-length L1 = {u1α} = {10(7/23)} = 1/23.

The gap-length L1+L2, for N = 8 is 3/23+2/23 = 5/23, and for N = 11
is 1/23 + 2/23 = 3/23.

Using theorem 2, the counts of gap-length L1, L2 and L1 + L2 must
respectively be: N + 1−u1, N + 1−uN and u1 +uN − (N + 1). For N = 8,
these counts are: 2, 6 and 1. For N = 11, these counts are: 2, 9 and 1.

We see these same gap-lengths and their counts in the figure also.

We can also relate the existence of L1 + L2 gap-length with qt and s as
below.

Corollary 5. The gap-length of L1 + L2 exists iff s < qt − 1.

Proof. From theorem 2, gap-length of L1 + L2 exist iff :

uN + u1 > N + 1

⇔ qt + qt−1 + rqt > N + 1 {using theorem 4}
⇔ qt + qt−1 + rqt > (rqt + s+ qt−1) + 1 {using (4)}
⇔ qt − 1 > s

As the range of s is 0 ≤ s ≤ qt − 1, so this gap-length does not exist
when s = qt − 1.

In the above example with α = 7/23, the gap-length L1 +L2 existed for
both N because for both N , s = 1 and so qt − 1 = 2 > s.
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Some Elaborations About Theorem 4

N < 1 + q1 In (3), note the particular case of t = 0, i.e.

q−1 + q0 ≤ N < q0 + q1 ⇔ 1 ≤ N < 1 + q1

Using (4) with t = 0,

N − qt−1 = rqt + s ⇔ N = r(1) + s

So for this range of N , r always equals N and s always equals 0. The
two corner points, u1 = qt = 1, uN = qt−1 + rqt = r = N , simply remain 1
and N for all such N . Due to Corollary 5, the gap-length L1 + L2 does not
exist because s = 0 = qt − 1.

A simple example of this case is with α = 2/11 = [0; 5, 2], where q1 = 5.
So for all N < 1 + q1 = 6, the corner points are 1 and N , and only two
gap-lengths will exist.

N = qt+1 The below range of N which decides t (from (3)):

qt−1 + qt ≤ N < qt + qt+1

can be split into two subranges:

(a) qt−1 + qt ≤ N < qt−1 + at+1qt = qt+1

(b) qt+1 ≤ N < qt + qt+1

Refer to relation (4). In (a), (N − qt−1) ranges from qt to at+1qt− 1. So,
r would take values 1 to at+1−1. For all N in this subrange, the two corner
points ((u1, uN ) or (uN , u1)) will be: qt and qt−1 + rqt.

In (b), (N − qt−1) ranges from at+1qt to at+1qt + (qt − 1). So, r remains
fixed at at+1, and s varies from 0 to qt − 1. The two corner points remain
fixed at: qt and (qt−1 + at+1qt = qt+1). It is this qt+1 corner point which
continues to remain the corner point when N crosses this range and enters
into a new range with “t” as t+ 1.

qt increments in N Also observe how the corner points change as N varies
in the range for a particular t: qt−1 + qt ≤ N < qt + qt+1.

Suppose t is even (odd case is similar) and so u1 = qt and uN = qt−1+rqt.
For allN in this range, u1 remains fixed, but uN changes whenever r changes.
When N starts at qt−1 + qt, r = 1, so uN = qt−1 + qt = N . Then, for every
qt increment in N , r increments by 1, and so uN changes too. This also
implies simultaneous changes in the gap-lengths due to theorem 2.

�
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