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Let α be any positive real number with α < 1, and N any positive
integer. For any real number x, let {x} denote the fractional part of x, i.e.
{x} = x− bxc. Consider the points {0α}(= 0), {1α}, {2α}, {3α}, . . . , {Nα}
in interval [0, 1]. For simplicity, we will assume in this discussion that all
these points are distinct; similar reasoning will apply if they start repeating
after {iα} for some i. These points will divide the interval [0, 1] in N + 1
non-empty intervals, which we will call “Gaps”.

The basic statement of Three Distance Theorem (also known as Three
Gap Theorem and Steinhaus Conjecture) is as follows. Please refer the
article titled Three Distance Theorem [1] for more insights into this theorem.

Theorem 1 (Three Distance Theorem). The gaps created (as described
above) have only upto three distinct lengths.

F. M. Liang gave a simple and elegant proof for a generic version of this
theorem [2]. In this article, we will see an elaboration of that proof for the
theorem presented above.

Any region (not necessarily a gap) with endpoints {iα} and {jα}, {iα} <
{jα}, will be denoted as (i, j) (i can be 0). A region from some endpoint
{iα} to endpoint 1 will be denoted by a special notation (i, 0), because a
region ending at 1 can be seen as wrapping around and ending at 0.

If a region contains some point {kα}, excluding its own endpoints, we
will say that the region “encloses” that point.

Note that a gap is also one of the regions just described, which does not
enclose any point. So we will use the same notation to denote a gap.

Copyright c© 2021 Nitin Verma. All rights reserved.

1

https://mathsanew.com


Reducing a Gap

Consider some gap (i, j) with i > 0 and j > 0. We already know {iα} <
{jα}. The two points p1 = {(i − 1)α} and p2 = {(j − 1)α} are simply a
left-shift of {iα} and {jα} by amount α, wrapping around 0 if necessary. If
both or none of the two points wrap around 0, we see that they will form
a region from p1 to p2 having the same length as gap (i, j). This region is
(i− 1, j − 1).

We can prove that it is impossible to have only {iα} wrap around 0 with
p2 > 0. Because then, 0 will be a point within this “wrapped region” from
p1 to p2. That means, right-shift of p1, 0 and p2 by α will give us gap (i, j)
but with point {α} enclosed by the gap. That is impossible since a gap
cannot enclose a point.

Though, we still can have only {iα} wrap around 0 with p2 = 0. This is
possible only with j = 1. In this case, we will define the region formed by
p1 and p2 to be from endpoint p1 to 1, which is denoted by (i− 1, 0). Since
j = 1, it is (i− 1, j − 1).

Thus, we can always associate a well-defined region with points p1 and
p2, which is precisely the region (i − 1, j − 1) and is of the same length as
gap (i, j).

So, given any gap (i, j) with i > 0 and j > 0, we can obtain the region
(i− 1, j− 1) from it. We will say, the gap (i, j) was “reduced” to the region
(i− 1, j − 1).

The obtained region (i − 1, j − 1) may enclose a point and so need not
be a gap. Suppose it encloses a point {kα} with k < N . But that means,
{(k + 1)α}, which is a right-shift of {kα} by α, must be enclosed by gap
(i, j). That is impossible since a gap cannot enclose a point. So we must
have k = N . We conclude that, the region (i − 1, j − 1) encloses either no
point (so, is a gap) or exactly one point {Nα}.

Further, since there is only one final point {Nα}, there must be exactly
one region (f1, f2) which encloses this point and no other point.

Thus, the region (i− 1, j − 1) must be either a gap or the unique region
(f1, f2).

Proof

Given any gap (a, b) (a or b may be 0), we can repetitively reduce it to
obtain regions (a, b), (a−1, b−1), (a−2, b−2) etc. until either of these two

2



happen: (1) the obtained region (a′, b′) encloses a point, (2) the obtained
region (a′, b′) has a′ or b′ equaling 0.

Upon termination, we will map the initial gap (a, b) to the final obtained
region (a′, b′).

If (1) holds upon termination, region (a′, b′) must be the region (f1, f2).

Otherwise ((2) holds, (1) doesn’t hold), the region (a′, b′) must be a gap,
either (0, b − a) (if b > a), or (a − b, 0) (if a > b). Note that gap (a − b, 0)
represents the gap ending at 1. We know that there is exactly one gap (0, s)
starting at 0, and exactly one gap (e, 0) ending at 1. So, in this case, the
region (a′, b′) must be either (0, s) or (e, 0).

Since reducing a gap doesn’t change its length, the above process will
end up mapping any gap to a gap/region of the same length. But we found
that, any gap can map to only one of these three: the region (f1, f2), the
gap (0, s), the gap (e, 0). Thus, there can be only upto three distinct gap
lengths.

Relation Between a Gap’s Endpoints

Suppose a gap (a, b) maps to (0, s). Then, we must have b > a and b−a = s.
Similarly, if the gap maps to (e, 0), we must have a > b and a− b = e.

Notice that the region (f1, f2) encloses a single point {Nα}. So, it con-
sists of two adjacent gaps (f1, N) and (N, f2). But each of these two gaps
must map to either (0, s) or (e, 0) (they can’t map to region (f1, f2)). Since
gap (f1, N) has f1 < N , it must map to (0, s). Similarly, gap (N, f2) must
map to (e, 0). Thus we must have: N − f1 = s and N − f2 = e. Hence,
f2 − f1 = s− e.

If a gap (a, b) maps to region (f1, f2), we must have b−a = f2−f1 (both
a and b were decremented by same amount to give f1 and f2). So due to
above, b− a = s− e.

In summary, each gap (a, b) must have the difference b − a one among:
s, −e, s− e.

Also note that the gap-length corresponding to region (f1, f2) is simply
the sum of lengths of the gaps (0, s) and (e, 0).

Theorem 1 and 2 in article [1] include the same results we just proved
above; s and e are referred as u1 and uN there, and the three gap lengths
as L1, L2 and L1 + L2.
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Example

The below figure shows the example of α = 7/23 and N = 11. All multiples
of 1/23 in interval [0, 1] have been marked. Numbers 1, 2, 3, . . . below the
interval line [0, 1] indicate points {α}, {2α}, {3α}, . . . .

Figure 1: α = 7/23 and N = 11
(0) (1)

1 2 34 5 67 8 910 11

Below is shown the repetitive reducing of all gaps, where each arrow
indicates a reduce operation. Note that all reduce sequences are terminating
at gaps (0, 10) or (3, 0), or region (1, 8).

(1, 11)→ (0, 10)

(11, 8)→ (10, 7)→ (9, 6)→ (8, 5)→ (7, 4)→ (6, 3)→ (5, 2)→ (4, 1)→
(3, 0)

(2, 9)→ (1, 8)
�
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