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The well-known Tower of Hanoi problem can be described as follows.
There are 3 vertical pegs numbered 1, 2 and 3, and N disks of radius
1, 2, 3, . . . , N units each having a hole in the center. Initially, all the N
disks are stacked onto peg 1 in decreasing order of their radius with the
largest one (radius N) at the bottom. Our goal is to shift this “tower” of N
disks to peg 3 using a sequence of moves where each “move” moves one disk
from top of one peg to top of another peg. A move cannot place a larger
disk over a smaller one. Peg 2 can be used as an auxiliary peg.

Following is a well-known recursive algorithm to solve this problem, im-
plemented in C. The subproblem instance recur(n, s, d, a) shifts the tower of
top n disks from peg s (source) to peg d (destination) with peg a (auxiliary)
serving as the auxiliary peg. The initial problem is recur(N, 1, 3, 2).

#define MOVE(x, y) { printf("%d->%d\n", x, y); }

void recur(int n, int s, int d, int a)

{

if(n == 1)

{

MOVE(s, d);

return;

}

recur(n-1, s, a, d);

MOVE(s, d);

recur(n-1, a, d, s);

}

We will now try to write an equivalent of this recursive algorithm without
using recursive calls. The recursive calls internally happen over a call-stack
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in which each stack-frame represents one call and stores the local state and
arguments of that call. In our non-recursive equivalent, we will maintain our
own stack to simulate the recursive calls, similar to how they would happen
on the internal call-stack. (This kind of approach to write non-recursive
equivalent of a recursive method was discussed in an earlier article titled
Maintaining the Stack for Recursion [1]).

Notice that each call of recur() requires storing its 4 arguments on the
call-stack; there can be upto N such calls at any point. Now we will see
how recur() can be transformed into a method without parameters, hence
avoiding the need to store their values.

Recursion without Parameters

Consider the 4-tuple (n, s, d, a) formed by the arguments of recur(), which
will be referred as “args-tuple”. Notice that the args-tuple for its two recur-
sive (“child”) calls, (n− 1, s, a, d) and (n− 1, a, d, s), are simple transforma-
tions of the args-tuple (n, s, d, a) of the current (“parent”) call. Specifically,
the transformation would consist of decrementing n and swapping (d, a) or
(s, a) (for the first and second recursive calls respectively). Thus, args-tuple
for the child calls are easily obtainable from that of the parent’s call.

Interestingly, these transformations are reversible and hence allow ob-
taining back the parent’s args-tuple from the corresponding child’s args-
tuple.

This suggests that we can maintain a single global 4-tuple of arguments,
g, which would correspond to the arguments of the current recur() call
and will be modified by appropriate transformations (as mentioned above)
during recursive calls and their return. Then, method recur() would access
its arguments from this global 4-tuple g and so can be made parameter-less.

Following equivalent of recur() is based on the above idea:

typedef struct args_tuple

{

int n;

int s;

int d;

int a;

} args_tuple;

args_tuple g;
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#define SWAP_g(x, y) { int t; t = g.x; g.x = g.y; g.y = t; }

#define MOVE_g(x, y) { printf("%d->%d\n", g.x, g.y); }

void recur2()

{

/* We will denote the three members s, d and a in struct g as

g(s, d, a). Say, at the start of this method,

g(s, d, a) = (S, D, A) */

if(g.n == 1)

{

MOVE_g(s, d);

return;

}

/* decrement n */

g.n = g.n - 1;

/* update g(s, d, a) to (S, A, D) */

SWAP_g(d, a);

recur2();

/* revert above update */

SWAP_g(d, a);

MOVE_g(s, d);

/* update g(s, d, a) to (A, D, S) */

SWAP_g(s, a);

recur2();

/* revert above update */

SWAP_g(s, a);

/* revert above decrement */

g.n = g.n + 1;

}

/* initial call */

g.n = N;

g.s = 1;

g.d = 3;

g.a = 2;

recur2();

Non-Recursive Equivalent

We will use the parameter-less method recur2 () to write a non-recursive
equivalent of the recursive algorithm. As said earlier, we will maintain our
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own stack to simulate the recursive calls.

Method recur2 () has no arguments and no local state to be stored on
the stack for each call. We only need to store the equivalent of instruction-
pointer (as happens for the call-stack) to indicate where to resume execution
after a recursive call returns. There are two recursive calls in this method
and hence only two possible resume-points (the very next statement to ex-
ecute after a call returns). We will identify these resume-points by integers
1 and 2. A special value 0 of resume-point will be used to indicate a fresh
call (not an actual resume); this will make our implementation simpler.

So, our stack-frame for each call is a very small one, consisting of only
the resume-point. As recursive calls are made and return, these frames are
pushed-on and popped-off the stack.

The global 4-tuple g can now be made local in the method; we will
unwrap its members such that they also serve as the parameters of this
method.

Following non-recursive equivalent of recur() is based on the above ideas:

#define SWAP(x, y) { int t; t = x; x = y; y = t; }

void nonrecur(int n, int s, int d, int a)

{

/* each frame of this stack actually requires only 2 bits, for

storing one of the resume-points: 0, 1, 2 */

char stack[n];

int top;

stack[0] = 0;

top = 0;

while(top >= 0)

{

/* execute a code-block of recur2() according to the current

resume-point */

switch(stack[top])

{

case 0:

if(n == 1)

{

MOVE(s, d);

/* return from this call */

top--;

continue;

}
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n = n - 1;

SWAP(d, a);

/* make the first recursive call */

stack[top] = 1;

stack[++top] = 0;

break;

case 1:

SWAP(d, a);

MOVE(s, d);

SWAP(s, a);

/* make the second recursive call */

stack[top] = 2;

stack[++top] = 0;

break;

case 2:

SWAP(s, a);

n = n + 1;

/* return from this call */

top--;

break;

}

}

}

Recursion as Tree Traversal

The recursive execution of recur() corresponds to a binary tree where each
node represents a call (with its args-tuple) and its two child nodes represent
the two recursive calls. The root node is the initial call. Consider the inorder
traversal of this tree in which, upon a node’s visit (processing), we perform
the move step of its call. We can reason that, the move steps thus performed
will be same as those performed by the complete execution of the initial call.

In recur2 () and nonrecur() also, the same inorder traversal of the tree
takes place. There, the nodes (args-tuples) are generated on-the-fly by using
transformations between parent and child nodes. But once we visit a node
(do its move step), we will often end-up performing multiple such transfor-
mations before we obtain and visit its successor node (do we see why?). (In
inorder traversal, successor of a node is the node visited just after it).

B. Meyer makes some interesting observations about how a node and its
successor are related, and how the successor can be obtained directly from a
node by a simple transformation [2]. Thus, the same inorder traversal can be
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performed but while directly obtaining and visiting the successor node after
each node. This saves the multiple intermediate transformations (between
parent-child nodes) we did above.
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