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In this article, we will find out how a certain proportion of hash functions
in a Universal Class must have some properties.

Consider a set H of hash-functions, each of which map the set of all
possible keys U to {0, 1, 2, . . . ,m − 1}, where m is a positive integer. H is
called a Universal Class if any two distinct keys x, y ∈ U map to the same
value by at most |H|/m functions in H. In other words, the set of functions
where x and y collide:

{h ∈ H | h(x) = h(y)}

has at most |H|/m functions.

We will denote |H| by H. For any non-negative integer i, the set
{0, 1, 2, . . . , i − 1} will be denoted as Zi, and the set {1, 2, . . . , i − 1} as
Z∗i .

Some set of hash-functions may demonstrate the above property for a
proportion of functions which is not necessarily 1/m. Say this proportion
is ε, for some real number ε in (0, 1). We may call such set as ε-Universal
Class.

The Universal Class (without ε specified) defined above has proportion
ε = 1/m, and so we will refer them as “1/m-Universal”. In our derivation
of properties, we will consider the more general ε-Universal classes so that
the results are more useful.

Below are two examples of ε-Universal Classes. The set of all possible
keys is: U = {0, 1, 2, . . . , u − 1}, for some positive integer u. p is a prime,
p ≥ u.

Copyright c© 2021 Nitin Verma. All rights reserved.

1

https://mathsanew.com


1. For each a ∈ Z∗p, b ∈ Zp, define:

ha,b(x) = ((ax+ b) mod p) mod m

H = {ha,b | a ∈ Z∗p, b ∈ Zp}

H is a 1/m-Universal class.

2. For each a ∈ Z∗p, define:

ha(x) = ((ax) mod p) mod m

H = {ha | a ∈ Z∗p}

H is a 2/m-Universal class.

Given any distinct keys x and y, these universal classes, due to their
definition, carry an upper-bound on the number of their functions where
x, y collide. It is this upper bound, εH, which we will utilize below to count
the functions in the class with certain properties.

The kinds of relations as discussed here, were originally derived and
utilized in a method of Perfect Hashing called FKS Method, by Fredman,
Komlós and Szemerédi in [1]. The relations and proofs from [1] are also
elaborated nicely in [2]. In these, the class of hash-functions considered is
the one from example-2 above. In book [3], chapter “Hash Tables”, we find
derivation of similar relations for 1/m-Universal Classes. The relations and
proofs presented in this article are adaptation from these sources, and are
for general ε-Universal classes.

Counting Collision-Free Functions

Consider a ε-Universal class H of H functions, mapping U to Zm. Say we
are given a set S of n keys from U . Are there any functions in H which give
no collision for all keys in S? We will refer to such functions as “Collision-
Free” for S. So, these functions map the n distinct keys to n distinct values
of Zm. Such a function would exist only if |Zm| ≥ |S|, i.e. m ≥ n.

The definition of ε-Universal class provides an upper bound of εH on the
number of functions where any key pair would collide. We can form

(
n
2

)
key

pairs from S. Thus, the maximum number of functions where any of these(
n
2

)
pairs can collide is:(

n

2

)
εH (1)
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Note that this is only an upper-bound and can even exceed the available
functions count of H. The subset of functions where a pair collides may
overlap with the subset of functions where some other pair collides. Since
above we simply added maximum size of each such subset (i.e. εH), once
for each pair, this upper bound may be loose.

Based on (1), the minimum number of functions in H which must be
collision-free for S, if

(
n
2

)
εH ≤ H:

H −
(
n

2

)
εH

So, the minimum proportion of such functions in H:

α =

(
H −

(
n
2

)
εH
)

H
= 1−

(
n

2

)
ε (2)

Although (2) need not provide a tight lower bound on the proportion of
functions which are collision-free for a given set of n keys, it can still be
useful. It relates the lower-bound α to ε, and it may be possible to adjust
the parameters of the universal class to achieve certain ε. For example, for
a 1/m-Universal class, ε = 1/m can be modified by simply modifying the
table-size m.

Suppose we want to ensure the lower bound α is at least 1/2; so at least
half of the functions in H are collision-free for a given set of n keys. Then
(2) gives:

1−
(
n

2

)
ε ≥ 1

2
⇔ ε ≤ 1

n(n− 1)
(3)

For any 1/m-Universal class, (3) becomes:

1

m
≤ 1

n(n− 1)
⇔ m ≥ n(n− 1)

And for 2/m-Universal class, (3) becomes:

2

m
≤ 1

n(n− 1)
⇔ m ≥ 2n(n− 1)

To make α at least f ∈ (0, 1), we need:

1−
(
n

2

)
ε ≥ f ⇔ ε ≤ 2(1− f)

n(n− 1)
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Theorem 1. Given ε-Universal class H and any set of n keys, the pro-
portion of functions in H which are collision-free for those keys is at least
f ∈ (0, 1) if:

ε ≤ 2(1− f)

n(n− 1)
.

Corollary 2. Given ε-Universal class H with ε = 1/m, and any set of n
keys, at least half of the functions in H are collision-free for those keys if:
m ≥ n(n− 1). For ε = 2/m, this condition is: m ≥ 2n(n− 1).

Counting Colliding-Pairs

Now we perform another counting, for the key-pairs which collide. For any
distinct keys x, y ∈ S and h ∈ H, we will call the pair (x, y) a “colliding-
pair under h” if h(x) = h(y). We will not distinguish between pairs (x, y)
and (y, x). Among the total

(
n
2

)
pairs in S, can we say anything about the

number of colliding-pairs under h? Let us denote the set of all
(
n
2

)
pairs as

P , and the number of colliding-pairs under h as Ch.

The definition of ε-Universal class only tells us about the maximum
number of functions under which a pair in P becomes a colliding-pair (εH).
For a particular function h, we don’t know how many pairs from P will
become a colliding-pair. But if we count the number of colliding-pairs for
each h ∈ H and add them together, we can progress as below:∑

h∈H
Ch =

∑
h∈H

(Number of p ∈ P such that p is colliding-pair under h)

=
∑
h∈H
|{p ∈ P | p is a colliding-pair under h}|

{interestingly, this count can also be performed as below}

=
∑
p∈P

(Number of h ∈ H such that p is colliding-pair under h)

=
∑
p∈P
|{h ∈ H | p is a colliding-pair under h}|

{any pair collides under maximum εH functions}

≤
∑
p∈P

εH

=

(
n

2

)
εH
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Thus,∑
h∈H

Ch

H
≤
(
n

2

)
ε (4)

In words, the number of colliding-pairs for a function (Ch), averaged over
all functions in H, is maximum

(
n
2

)
ε.

Note that for all h ∈ H, 0 ≤ Ch ≤
(
n
2

)
. It is easy to prove that among

any H non-negative numbers, with average A, at least dH/2e numbers must
be less than 2A. So, we can conclude:

Theorem 3. Given ε-Universal class H and any set of n keys, at least
half of the functions in class H must have number of colliding-pairs Ch <
2
(
n
2

)
ε = n(n− 1)ε.

This provides an upper-bound on Ch attained by at least half of the
functions. So, to make sure that at least half of the functions are collision-
free for a given set of n keys, i.e. have Ch = 0, we can restrict this upper-
bound to be 1 (Ch are integers):

n(n− 1)ε ≤ 1 ⇔ ε ≤ 1

n(n− 1)

and adjust our universal-class to achieve such ε. Note that this relation is
same as equation (3) obtained in the last section.

Similarly, we know that at least one function must have Ch not exceeding
the average of all Ch. So, to make sure that at least one function is collision-
free (Ch = 0), we can restrict this average to be less than 1:(

n

2

)
ε < 1 ⇔ ε <

2

n(n− 1)
.

From Ch to s2i

For a function h ∈ H, let us denote by Si the set of keys from S which are
mapped to i ∈ Zm by h. Say si = |Si|. So, the number of colliding-pairs in
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slot i is
(
si
2

)
. Hence,

Ch =
∑
i∈Zm

(
si
2

)
=
∑
i∈Zm

s2i − si
2

=
1

2

(∑
i∈Zm

s2i −
∑
i∈Zm

si

)

=
1

2

(∑
i∈Zm

s2i − n

)

So the following inequality from theorem 3 can be rewritten:

Ch < n(n− 1)ε

⇔ 1

2

(∑
i∈Zm

s2i − n

)
< n(n− 1)ε

⇔
∑
i∈Zm

s2i < 2n(n− 1)ε+ n

Corollary 4. Given ε-Universal class H and any set of n keys, if si is the
number of keys mapped to slot i by a function h ∈ H, at least half of the
functions in class H must have si such that:∑

i∈Zm

s2i < 2n(n− 1)ε+ n.

This upper-bound on the sum of s2i finds its use for optimizing space in
the FKS Method of Perfect Hashing [1].
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