A Useful Bound from the Average

Nitin Verma
mathsanew.com

March 9, 2021

Say there are n unknown real-numbers which need not be all distinct. The only thing we know about them is their average m, and their range $[l, u]$. Will we be able to say anything about what proportion $f(0 \leq f \leq 1)$ of these numbers are at least a given t ?

The cases of $t \leq l$ and $t>u$ trivially imply $f=1$ and $f=0$ respectively. So, we don't really need to figure them out. Also note that, if $m=l$, or $m=u$, all n numbers must simply equal m.

There are $f n$ numbers in this collection which are at least t. Let us refer them as bag ("multiset") B_{u} (' u ' for upper), and their sum as S_{u}. The remaining $(1-f) n$ numbers can be referred as bag B_{l} (' l ' for lower), which must have sum $S_{l}=m n-S_{u}$.

Since all numbers are at most u :

$$
\begin{equation*}
S_{u} \leq f n u \tag{1}
\end{equation*}
$$

and since numbers in bag B_{u} are at least t :

$$
\begin{equation*}
S_{u} \geq f n t \tag{2}
\end{equation*}
$$

Note that, even when bag B_{u} is empty $\left(f=0, S_{u}=0\right)$, the above inequalities remain valid.

Similarly, since all numbers are at least l :

$$
\begin{align*}
& \\
& S_{l} \tag{3}\\
\Leftrightarrow \quad & S_{u}
\end{align*}
$$

which remains valid even when bag B_{l} is empty: $f=1, S_{l}=0$.
Copyright © 2021 Nitin Verma. All rights reserved.

Since numbers in bag B_{l} are less than t, S_{l} must be less than $(1-f) n t$ if B_{l} is non-empty $(f<1)$. For the case when B_{l} is empty $(f=1)$, we can say $S_{l}=0=(1-f) n t$. So, in general:

$$
\begin{align*}
& S_{l} \leq(1-f) n t \\
& \Leftrightarrow \quad S_{u} \geq m n-(1-f) n t \tag{4}
\end{align*}
$$

Combining (1) and (4):

$$
\begin{array}{rlrl}
& & f n u & \geq m n-(1-f) n t \\
\Leftrightarrow & f u & \geq m-t+f t \\
\Leftrightarrow & f & \geq \frac{m-t}{u-t}, \quad \text { if } t<u \tag{5}
\end{array}
$$

Combining (2) and (3):

$$
\begin{align*}
& & f n t & \leq m n-(1-f) n l \\
& \Leftrightarrow & f t & \leq m-l+f l \\
& \Leftrightarrow & f & \leq \frac{m-l}{t-l}, \quad \text { if } t>l \tag{6}
\end{align*}
$$

Since l, u and m are given constants, (5) and (6) provide a relation between f and t. Note that if $t \geq m, m-t \leq 0$; so (5) provides a nonpositive lower bound on f, and hence does not remain useful. Also, if $t \leq m$, $t-l \leq m-l$; so (6) provides an upper-bound on f which is at least 1 , and hence does not remain useful.

Now, let us look at some specific cases of inequalities (5) and (6).
For $t=2 m-l=m+(m-l)>m($ when $m>l),(6)$ becomes:

$$
f \leq \frac{m-l}{2 m-2 l}=\frac{1}{2}
$$

So, at most half of the n numbers can have value of $2 m-l$ or above.
For $t=2 m-u=m-(u-m)<m$ (when $m<u),(5)$ becomes:

$$
f \geq \frac{u-m}{2 u-2 m}=\frac{1}{2}
$$

So, at least half of the n numbers must have value of $2 m-u$ or above.
If all n numbers are known to be non-negative, i.e. $l=0$, (6) becomes:

$$
f \leq \frac{m}{t}, \quad \text { if } t>0
$$

which means that, for any $t>0$, at most m / t proportion of the n numbers can be t or above. This reminds us of the Markov's Inequality.

Similarly, a corollary from the Markov's Inequality, known as Reverse Markov's Inequality (see, for instance [1]), corresponds to (5) above.

References

[1] Nick Harvey. Lecture Notes.
https://www.cs.ubc.ca/ ${ }^{\sim}$ nickhar/W12/Lecture2Notes.pdf.

