Home

[This page is auto-generated; please prefer to read the article’s PDF Form.]



[Prev]   [Up]   

From Ch to si2

For a function h ∈ℋ, let us denote by Si the set of keys from S which are mapped to i m by h. Say si = |Si|. So, the number of colliding-pairs in slot i is (si)
  2. Hence,

      ∑   (  )
Ch =       si
     i∈ℤ    2
      ∑ m  2
   =      si −-si
     i∈ℤm   2
       ( ∑        ∑     )
   =  1-     s2 −     si
      2  i∈ℤ   i   i∈ℤ
       (   m       )m
   =  1- ∑   s2 − n
      2       i
         i∈ℤm

So the following inequality from theorem 3 can be rewritten:

      (          Ch) < n(n − 1)𝜖
    1   ∑
⇔   --      s2i − n  < n(n − 1)𝜖
    2   i∈ℤm
⇔             ∑   s2 < 2n(n − 1)𝜖+ n
                  i
             i∈ℤm

Corollary 4. Given 𝜖-Universal class and any set of n keys, if si is the number of keys mapped to slot i by a function h ∈ℋ, at least half of the functions in class must have si such that:

 ∑   2
    si < 2n(n − 1)𝜖+ n.
i∈ℤm

This upper-bound on the sum of si2 finds its use for optimizing space in the FKS Method of Perfect Hashing [1].

References

[1]   M. L. Fredman, J. Komlós, E. Szemerédi. Storing a Sparse Table with O(1) Worst Case Access Time. J. ACM, Vol 31 (3) (1984), 538–544.

[2]   Z. J. Czech, G. Havas, B. S. Majewski. Fundamental Study: Perfect Hashing. Theoretical Computer Science, Vol 182 (1–2) (1997), 1–143.

[3]   T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein. Introduction to Algorithms, Third Edition. The MIT Press, 2009.

[Prev]   [Up]