This is a program which also contains annotations to help prove its correctness using the Frama-C software.
The annotations specify various properties for a method like the pre-condition, post-condition, assertions, states
modified, loop-invariants and loop-variants. They are also used to define other artifacts to ease specification/proving like
predicates, logic functions, axioms and lemmas. These annotations are provided inside code-comments
of the form /*@ ... */
and //@ ...
.
Frama-C with its WP plugin works with external provers like Alt-Ergo and CVC4 to automatically prove these specified properties. The WP plugin internally works based on the Weakest Precondition calculus. You can read more about this plugin's usage and meaning of the annotations in this tutorial.
The programs provided here have been proved using these versions of the tools: Frama-C (contains WP plugin) 21.1, Alt-Ergo 2.3.1 and CVC4 1.6. The system is x86_64 running Debian 10 Linux.
In addition to proving the specified properties, we will also be checking for other issues like
overflows via another Frama-C plugin called
RTE (by using option -wp-rte
).
Command to prove this program:
frama-c -wp -wp-prover cvc4 -wp-rte filename.c
/* Method euclid() computes the greatest-common-divisor (GCD) of positive
integers A and B, using the Euclid's GCD algorithm. The variant of the
algorithm below reduces 'a' (similarly 'b') to (a-b). There is another
variant which reduces 'a' to the remainder (a mod b). */
typedef unsigned int uint;
/*@
// is 'd' a common-divisor of 'a' and 'b' ?
predicate is_common_divisor(uint d, uint a, uint b) =
a%d == 0 && b%d == 0;
lemma order_a_b:
\forall uint a, b, d; is_common_divisor(d, a, b) <==> is_common_divisor(d, b, a);
lemma divides_itself:
\forall uint a; a > 0 ==> is_common_divisor(a, a, a);
axiomatic axm {
axiom subtraction:
\forall uint a, b, d; a > b ==>
(is_common_divisor(d, a, b) <==> is_common_divisor(d, (uint)(a-b), b));
}
*/
/*@
requires A > 0 && B > 0;
assigns \nothing;
ensures is_common_divisor(\result, A, B);
// the result is the greatest among all common-divisors of A and B
ensures \forall uint d; is_common_divisor(d, A, B) ==> d <= \result;
*/
uint euclid(uint A, uint B)
{
uint a, b;
a = A;
b = B;
/*@
loop assigns a, b;
loop invariant a > 0 && b > 0;
loop invariant \forall uint d;
is_common_divisor(d, a, b) <==> is_common_divisor(d, A, B);
loop variant a+b;
*/
while(a != b)
{
L1:
if(a > b)
{
a = a - b;
/*@assert \forall uint d; is_common_divisor(d, \at(a, L1), \at(b, L1)) <==>
is_common_divisor(d, a, b); */
}
else
{
b = b - a;
/*@assert \forall uint d; is_common_divisor(d, \at(a, L1), \at(b, L1)) <==>
is_common_divisor(d, a, b); */
}
}
return a;
}
Copyright © 2022 Nitin Verma. All rights reserved.