Home

[This page is auto-generated; please prefer to read the article’s PDF Form.]



[Prev]   [Up]   [Next]   

First Estimate

Let us say, we first estimate the desired quotient-digit d to be the following based on the initial digits of the divisor b and IDD x:

d1 = min (⌊(yz)∕e⌋,B − 1)
(7)

Since d1 ≤⌊(yz)∕e,

ed1 ≤ (yz)
(8)

Can this estimate d1 be less than d? Let’s assume the case when d1 < d. Since d B 1, we must have d1 < B 1, i.e. d1 = (yz)∕e. But that means,

e(d1 + 1) > (yz)

In the multiplication bs{s = d1 + 1} from the last section, the value (uv) in the result will follow, due to (3) and above:

(uv) ≥ e(d1 + 1) > (yz )

Thus, b(d1 + 1) would exceed the IDD x (using (5)), and so d1 + 1 or any higher digit cannot be the desired quotient-digit d. This contradicts our assumption that d1 < d. Hence,

d ≤ d1
(9)

[Prev]   [Up]   [Next]